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ABSTRACT

We introduce a general approach, called Invariance through Inference, for im-
proving the test-time performance of an agent in deployment environments
with unknown perceptual variations. Instead of producing invariant visual fea-
tures through interpolation, invariance through inference turns adaptation at
deployment-time into an unsupervised learning problem. This is achieved in
practice by deploying a straightforward algorithm that tries to match the dis-
tribution of latent features to the agent’s prior experience, without relying on
paired data. Although simple, we show that this idea leads to surprising im-
provements on a variety of adaptation scenarios without access to deployment-
time rewards, including changes in camera poses and lighting conditions. Re-
sults are presented on challenging distractor control suite, a robotics environ-
ment with image-based observations. Here is our project page: https://
invariance-through-inference.github.io/.

1 INTRODUCTION

Train

Test

Figure 1: Methods such as data aug-
mentation try to make the training dis-
tribution large at the expense of com-
plexity and performance. In spite of
these efforts, these methods still often
fail to adequately cover the target distri-
bution.

Let us consider the ability of an intelligent agent to gen-
eralize to unseen domains. To have such a discussion,
we must first consider what generalization means. In
much of the learning literature, we typically assume that
an agent will accrue experiences of sufficient variation
during training, and that these experiences will allow
the agent to generalize to novel settings during deploy-
ment. Since the richness of the agent’s experience is of
paramount importance to the quality of its generalization,
there exist a broad family of methods that expand the sup-
port distribution of the agent’s training set. Domain trans-
fer, domain randomization, and meta learning all fall into
this category.

Expanding the support of the training distribution is most
often accomplished via artificial data augmentation. In
pixel-based control tasks, for example, image observa-
tions are cropped, shifted, rotated, and discolored to make
learned policies more robust to shifts in the input obser-
vation at test time (Hansen & Wang, 2020; Yarats et al.,
2021). In RL, this type of augmentation can cause value
function estimation to become unstable (Laskin et al.,
2020; Raileanu et al., 2020; Kumar et al., 2021), and so
care must be taken to avoid destabilizing training.

While these approaches are powerful, they are often prone to failure in the case where the target
domain is not known a priori. In this case, if the target domain falls out-of-distribution, the agent will
lack the ability to self correct and will fail, even if great pains were taken to significantly widen the
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size of its training support. Indeed, as we show in Section 5, even the most robust data augmentation
schemes fail when the target observation space differs substantially from that of training. We refer to
these approaches Invariance through Interpolation, which aims to improve an agent’s generalization
by increasing the richness of its experiences, as in-distribution generalization.

A more challenging problem—but one that is also more realistic—is generalizing out-of-
distribution. In this setting, we assume the specifics of the agent’s deployment are not known in
advance. Taking this even further, we assume that access to instrumented reward supervision is
unavailable in the deployment environment. Here, the burden placed on the agent hoping to gener-
alize is significant. Since we do not have access to reward, fine-tuning via reinforcement learning
is impossible. Prior experience will help, but a truly out-of-distribution environment of which the
agent has no prior knowledge will make the transfer problem non-trivial. While difficult, this setting
of out-of-distribution generalization is nevertheless pervasive in fields such as robotics, wherein a
robot trained from pixel observations in the factory will inevitably encounter new settings with dif-
ferent lighting conditions, environmental objects, physical dynamics, and sensor modalities during
deployment.

To make progress on out-of-distribution generalization, we consider how we can best leverage the
information we do have: the agent’s prior experiences during training. Specifically, if we assume the
original task the agent was optimized for during training remains well-defined in the target domain,
then it is also safe to assume that the agent does have some understanding of the underlying Markov
decision process in the target domain. Without further assumptions or loss of generality, we may
recast the out-of-distribution generalization problem into an unsupervised adaptation between two
MDPs that share underlying dynamics and reward structure, but with distinct observations.

This type of unsupervised adaptation in RL has not been explored widely yet to the best of our
knowledge. One of the simplest approaches in this vein is to train a policy with a self-supervised
auxiliary task such as inverse dynamics, and rely entirely on it during adaptation (Hansen et al.,
2020). Yet attractive for its simplicity, it often performs relatively poorly, as discussed in Section
5. Another approach is to enforce Cycle-GAN (Zhu et al., 2017) style objective to learn cycle-
consistent mappings between domains (Zhang et al., 2020). Although it is shown to work well in
multiple scenarios, it requires access to states, which is not generally available in pixel-based control
tasks we consider.

In this paper, we investigate ways to improve generalization under this challenging scenario. Rather
than producing policy invariance by explicitly baking this property into training, we harness prob-
abilistic inference to produce invariance by taking advantage of the latent structure the agent has
already discovered in the environment. As we will see, this pays great dividends in producing
robotic agents that can function effectively in deployment environments that exhibit different light-
ing, object texture, or camera poses. To distinguish our approach from prior works that attempt to
produce generalization by baking invariances into the policy at training time, we refer to our method
as “Invarivance Through Inference.”

2 RELATED WORK

Generalization in reinforcement learning is a longstanding problem. Recent work has shown
that accurately quantifying generalization in this setting poses a challenge (Lee et al., 2019; Cobbe
et al., 2019; Zhang et al., 2018). This challenge is further amplified in visual RL from pixels,
where measuring the difference between two problems is especially difficult. One promising class
of techniques for generalization in image-based RL utilize image augmentation to greatly increase
the size of the training distribution. These techniques have enjoyed success in vision research (Chen
et al., 2020a; He et al., 2020). However, it was only recently shown that such data augmentation leads
to instability in value function estimation in RL algorithms (Hansen & Wang, 2020; Hansen et al.,
2021). This line of work showed how to stabilize data-augmented RL, which lead to a significant
increase in the generalization capabilities of RL algorithms. The primary shortcoming of these
methods is that it is largely impossible to effectively cover the entire potential test distribution by
expanding the training distribution, and some test time adaptation is often needed. Several recent
works (Hansen et al., 2020; Wang et al., 2020) consider this setting of adaptation at test time, and
are further discussed in Section 3.
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Invariant Representation Learning is a broad class of techniques for learning representations that
are robust across changes in the agent’s environment or reward. Often, the agent will use auxiliary
information related to dynamics (Hafner et al., 2020) or reward prediction (Jaderberg et al., 2016)
to learn a latent representation that is invariant across changing environmental conditions. This
is closely related to the idea of self-supervised learning (Chen et al., 2020b; Grill et al., 2020).
When applied to visual space RL, it has been shown that self-supervised pre-training provides an
efficient way to bootstrap useful invariant representations, even in the absence of a ground-truth
reward (Schwarzer et al., 2020; Srinivas et al., 2020).

Domain Shift considers the problem of test-time shift in the underlying input data distribu-
tion (Ganin et al., 2016). One common class of techniques for addressing this problem is to learn rep-
resentations that maximize domain confusion, thus requiring that the agent learn domain-invariant
features. This idea has been applied successfully in imitation learning (Stadie et al., 2017). More
recent advances have combined Cycle-GANs with imitation learning to produce features that are
cycle consistent across domains (Smith et al., 2019). Another approach bottlenecks the information
on the latent code of a VAE-based architecture to learn features that are more robust across domain
shift in a variety of adversarial settings (Peng et al., 2018).

Meta Learning tries to solve generalization by aggregating learning across distributions of
tasks (Finn et al., 2017; Duan et al., 2016; Rakelly et al., 2019). Often, meta learning pipelines
focus heavily on fast inference at test time. This is most often accomplished through using some
form of bi-level optimization (Rothfuss et al., 2018; Houthooft et al., 2018). Unfortunately, meta
learning methods generally require training over entire task distributions. Worse still, this results
in the need for a distribution of reward functions for each task during both training and test time.
Defining even a single reward function is often quite difficult, let alone many closely related reward
functions. Recent work has tried to alleviate this burden with unsupervised training (Hsu et al.,
2018).

3 PROBLEM FORMULATION

Consider the standard infinite horizon Markov decision process (MDP) (Puterman, 2014) parameter-
ized via the tupleM = ⟨S,O,A,R, P, γ⟩, where S, O, and A are the state, observation, and action
spaces, respectively, P : S ×A 7→ S is the transition function, R : S ×A 7→ R is the scalar reward,
and γ is the discount factor. Recall that the state space S usually represents ground-truth informa-
tion about the agent’s environment, which we assume the agent can not directly access. Instead,
the agent receives a stream of observations o ∈ O that convey information about the environment.
In this paper, we assume the environment is fully-observable. In other words, the true state can be
perfectly inferred from the corresponding observation, given the right feature extractor. The goal of
reinforcement learning is to solve for the policy π : O × A 7→ [0, 1] that maximizes the expected
discounted return J = E [

∑
∞ γtR(st, at)] over infinite horizon, represented as the Qπ(o, a) func-

tion. In this paper, we assume that the policy π consists of an encoder F : O 7→ Z, where Z is a
compact latent space, and a policy πz : Z ×A 7→ [0, 1].

We consider a setting wherein there are two distinct domains: a source domain Msrc and a target
domainMtgt. Crucially, when the agent is placed in the previously unseen target domain, we assume
that it can only access its observations and the actions it took, but not reward. Often, we are most
interested in the case where shift betweenMsrc andMtgt is induced by differences in the observation
spaces Osrc and Otgt. That is, the state and reward dynamics between the source and target domains
are quite similar, but the observation spaces between the two are significantly different. Practically
speaking, this can happen quite easily in the presence of distractors, corrupted or malformed inputs,
or shifts in sensor readings at test time. Consider a robot that is trained from image observations in a
clean environment, and then expected to perform the same task in the wild, where changing lighting
conditions and environmental conditions might lead to significantly different image observations. As
a result of this distributional shift in the observations on which the policy is conditioned, deploying
an agent trained in the source domain directly in the target domain (i.e., zero-shot transfer) results
in poor performance.

Given an agent pretrained on a source domain, our goal is to adapt it to the target domain. As we
do not have knowledge about the correspondence of observations in the two domains, this setting
essentially requires us to make use of unpaired trajectory samples from each domain to drive adap-
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Figure 2: Our proposed Invariance through Inference architecture. The encoder F takes an obser-
vation of target domain, and learns to fool the discriminator, while the discriminator D predicts
whether the input is an encoded target observation or a latent sample from source buffer. This adver-
sarial training encourages the distribution of encoder outputs to be similar to the latent embedding
sampled from the source buffer. Cdyn is the pretrained forward and inverse dynamics networks used
only to guide the encoder during adaptation.

tation. The proposed method, Invariance through Inference, aims to only adapt the encoder F in a
manner that minimizes distributional shift in Z between the domains and, in turn, enables the policy
πz to transfer to the unseen target domain, by utilizing only unpaired transitions. We achieve this by
jointly optimizing two objectives: distribution matching and dynamics consistency.

4 INVARIANCE THROUGH INFERENCE

4.1 DISTRIBUTION MATCHING

We first deploy a random exploration policy in both the source and target domains to collect samples
of observation trajectories

Bsrc =
(
. . . , osrc

t , a
src
t , o

src
t+1, . . .

)
∼ Pπ̄(Msrc) (1a)

Btgt =
(
. . . , otgt

t , a
tgt
t , o

tgt
t+1, . . .

)
∼ Pπ̄(Mtgt), (1b)

where Pπ̄(M) denotes the distribution of transitions produced with a random policy in domainM.
Given an observation ot, an encoder F produces a corresponding latent representation zt

zsrc
t = F (osrc

t ) (2a)

ztgt
t = F (otgt

t ). (2b)

We seek to match the distribution over ztgt
t with that over zsrc

t by adapting the weights of the encoder
F , without access to test-time rewards. We employ adversarial training to achieve this. Specifically,
our architecture (Fig. 2) includes a discriminator D that tries to distinguish between embeddings
from the source domain zsrc

t and those from the target domain ztgt
t . At the same time, we adapt the

parameters of the encoder to produce a latent embedding that is indistinguishable to the discrimina-
tor. This results in matching latent distribution over zsrc

t and ztgt
t . Following the Wasserstein GAN

(Arjovsky et al., 2017) formulation, we express our distribution matching loss as

Jadv = EPπ̄(Msrc)

[
D

(
F̄ (osrc

t )
)]

+ EPπ̄(Mtgt)

[
1−D

(
F (otgt

t )
)]
, (3)

where F̄ indicates that the weights of the network are frozen. The encoder tries to minimize this
objective while the discriminator acts as an adversary and seeks to maximize it, resulting in a GAN-
like minimax game.

4.2 DYNAMICS CONSISTENCY

Theoretically, the use of adversarial training can result in an encoder that maps source and target
domain observations to latent embeddings that have identical distributions. However, it is possible
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Algorithm 1 Invariance through Inference

Require: Pretrained encoder F , discriminator D, buffers B∗src and Btgt, inverse dynamics network
parameterized with ψinv
for i=1:N do ▷ Pre-fill buffers

Sample zt, at, zt+1 ∼ Pπ̄(Msrc;F )
Sample ot, at, ot+1 ∼ Pπ̄(Mtgt)
B∗src ← B∗src ∪ (zt, at, zt+1)
Btgt ← Btgt ∪ (ot, at, ot+1)

for i = 1 : Tdynamics do ▷ Pretrain dynamics networks
Sample zt, at, zt+1 ∼ B∗src
ginv ← ∇ψinvLdyn(zt, zt+1, at;ψinv)
ψinv ← Optimizer(ψinv, ginv)

for i = 1 : Tadapt do ▷ Adaptation main loop
Sample zsrc

t , a
src
t , z

src
t+1 ∼ B∗src

Sample otgt
t , a

tgt
t , o

tgt
t+1 ∼ Btgt

gD ← ∇θD
[
D(zsrc

t ) + (1−D(F (otgt
t )))

]
▷ Distribution matching (adversarial) loss

gF1 ← ∇θF
[
D(zsrc

t ) + (1−D(F (otgt
t )))

]
gF2
← ∇θFLdyn(F (o

tgt
t ), F (otgt

t+1), at;ψ
∗
inv) ▷ Dynamics consistency loss

θD ← Optimizer(θD, gD)
θF ← Optimizer(θF , gF1 , gF2)

for a sufficiently expressive encoder to map the same target observations to a random perturbation
of observations in the source domain while still matching the distributions (Zhu et al., 2017). To
mitigate this, we take advantage of the shared underlying dynamics as a feature-rich and informative
source of mutual information between the two domains.

Specifically, let Cinv(zt, zt+1;ψinv) be the inverse dynamics network that predicts the action at asso-
ciated with the transition from zt to zt+1, and Cfwd(zt, at;ψfwd) be the forward dynamics network
that predicts the next latent zt+1from zt and at. We then define the dynamics consistency loss as the
error in the inverse dynamics predictions

Ldyn(zt, zt+1, at;ψfwd, ψinv) = ∥Cfwd(zt, at;ψfwd)− zt+1∥22 + ∥Cinv(zt, zt+1;ψinv)− at∥22. (4)

Most importantly, we pretrain the inverse dynamics network on transitions sampled from the source
domain Bsrc ∼ Pπ̄(Msrc) (Eqn. 1a) with observations encoded with F

ψ∗
fwd, ψ

∗
inv = arg min

ψfwd,ψinv

EPπ̄(Msrc;F )

[
Ldyn(z

src
t , z

src
t+1, a

src
t ;ψfwd, ψinv)

]
, (5)

where Pπ̄(M;F ) is the distribution over latent trajectories. Under the assumption that the underly-
ing dynamics are shared by the domains, we then utilize these learned dynamics models to further
encourage the latent embeddings for the target domain to align with those of the source domain.
Specifically, during adaptation, we freeze the weights of the forward and inverse dynamics network,
and minimize the following dynamics consistency loss with respect to encoder F using transitions
sampled from the target domain Btgt ∼ Pπ̄(Mtgt) (Eqn. 1b)

Jdyn = EPπ̄(Mtgt;F )

[
Ldyn(z

tgt
t , z

tgt
t+1, a

tgt
t ;ψ∗

fwd, ψ
∗
inv)

]
. (6)

4.3 JOINT OBJECTIVE

We adapt our encoder by minimizing a loss that combines both the adversarial loss Jadv (Eqn. 3)
and the dynamics consistency loss Jdyn (Eqn. 6). Specifically, we solve for the parameters of the
encoder through the following minimax objective

argmin
F

argmax
D

[Jadv + Jdyn] . (7)

This adaptation objective is effectively maximizing the mutual information between the prototypical
representation kept from during training, and the adapted representations of the new observations.
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Figure 3: Samples from the modified DistractingCS with intensities increasing from (left-most col-
umn) zero to (right-most column) one for the (top row) color, (middle row) camera pose, and (bottom
row) background distractions.

Algorithm 1 summarizes the whole procedures to sample trajectory, pretrain dynamics networks and
adapt encoder via the objective.

In summary, in contrast to those methods that produce invariance through interpolation, our adapta-
tion objective produce invariance by making statistical inference in the latent space. For this reason
we refer to the derived method as Invariance through Inference.

5 EXPERIMENTS

We want to understand the impact of test-time inference on an agent’s ability to perform out-of-
distribution generalization. This section will compare Invariance through Inference with two state-
of-the-art methods for data-augmented reinforcement learning: SVEA (Hansen et al., 2021) and
DrQ-v2 (Yarats et al., 2021). Recall from the introduction that these methods vie for increased
generalization capabilities by expanding the support of the training distribution. We expect this form
of generalization to be less performant than unsupervised adaptation at test time. In our experiments,
we will also compare against Policy Adaptation during Deployment (PAD) (Hansen et al., 2020), a
baseline that, like our method, adapts the policy without access to the reward at test time.

To further probe the generalization abilities of test-time inference, we conduct an experiment
wherein we vary the intensity of environmental distractions. The upshot here is that test-time in-
ference significantly increases the robustness of our policy to distractions during deployment. We
will conclude with some general discussion and remarks regarding the design tradeoffs involved in
test-time inference.

Setup We conduct experiments using nine domains from the DeepMind Control Suite
(DMC) (Tassa et al., 2018). We use DMC as the training (source) environment and the Distract-
ing Control Suite (DistractingCS) (Stone et al., 2021) as the distracted test (target) environment.
DistractingCS adds three types of distractions to the DeepMind Control Suite in the form of changes
to the background image, deviations in color, and changes to the camera pose relative to training.

Modifications to DistractingCS The default configuration of DistractingCS changes distractions
at the start of every episode (e.g., different background images are used at every episode). However,
we are interested in measuring an agent’s ability to perform inference across several episodes on the
same target environment. Thus, we modify DistractingCS to sample a distraction once in the be-
ginning of learning, and then use the same distraction across all learning epochs. This also ensures
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Figure 4: The gain of applying Invariance through Inference to various distracted baselines. Dashed
lines denote the performance of the baseline agent in the target environment (i.e., zero-shot), while
solid lines represent the performance gains of the base agent with ITI (our method).

consistent evaluation across algorithms. In accordance with this change, we also modify the inten-
sity benchmark from DistractingCS. In our experiments, intensity measures the deviation between
an environment distraction and the train environment’s default value. For example, intensity may
measure how far the distracting color is from the default. Finally, we modify the environments to
only apply a single distraction during testing (rather than all three) in order to better understand the
impact of each type of distraction on overall performance. Figure 3 shows an example of distractions
across intensities on Walker-walk domain.

5.1 INVARIANCE THROUGH INFERENCE ON DMCONTROL

This section studies the impact of test-time adaptation on DMControl performance. We begin by
pretraining soft actor-critic (SAC) (Haarnoja et al., 2018), SVEA, and DrQ-v2 in a non-distracting
training-time environment. After training, we evaluate the learned policies on test environments with
distractions of various intensities. This evaluation is zero-shot, i.e., there is no additional training in
the test environment.

Table 1: Episode return in the target (test) environments (mean and standard deviation) before (zero-
shot) and after (+ITI) adaptation for SAC, SVEA, and DrQ-v2 with background distraction at an
intensity setting of 1.0. The performance of each baseline in the source (training) environments can
be found in the Appendix.

SAC SVEA DrQ-v2
Domain Zero-shot +ITI Zero-shot +ITI Zero-shot +ITI

ball in cup-catch115± 50 227± 222 490± 376 987± 27 88± 39 386± 425
cartpole-balance 434± 275 585± 295 446± 330 627± 258 273± 107 322± 117
cartpole-swingup 182± 147 369± 243 269± 365 612± 213 82± 35 247± 136
cheetah-run 169± 65 248± 53 317± 137 378± 55 100± 88 393± 125
finger-spin 113± 162 192± 196 391± 467 943± 54 207± 328 769± 206
finger-turn easy 163± 99 146± 33 278± 180 491± 343 268± 241 914± 44
reacher-easy 179± 65 381± 76 75± 77 624± 305 58± 32 685± 211
walker-stand 330± 118 364± 115 917± 138 999± 12 630± 197 868± 151
walker-walk 242± 142 291± 134 866± 45 924± 45 326± 195 770± 140

Table 1 presents the results for the different DistractingCS domains in the presence of background
distractions with an intensity level of 1.0. Specifically, we compare the test-time performance of
SAC, SVEA, and DrQ-v2 in each domain with the episode rewards that we achieve when using our
Invariance through Inference algorithm to adapt the encoder. The baseline algorithms employ image
augmentation, which provides some robustness to variations at test time. Even then, however, we
find that Invariance through Inference adaptation improves the test-time generalization of all three
baseline policies in most domains, often resulting in significant performance gains. In cases where
Invariance through Inference does not improve performance, the resulting reward is comparable to
the baseline policy, i.e., Invariance through Inference does not result in a performance degradation.

Figure 4 visualizes the performance of the different methods, averaged over the set of DistractingCS
domains, as a function of the intensity of the distractions. Since the baseline methods are trained
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Figure 5: Relative improvement (compared to zero-shot) as a function of adaptation steps when
applying ITI to different baseline policies. As in Figure 4, each point represents the mean over nine
domains and five random seeds. The results correspond to an intensity value of 1.0.

with image augmentation, they do exhibit some robustness to distraction. However, we see this
robustness rapidly diminishes as the distraction intensity increases. In particular, large changes to
camera pose or the image background proved challenging for standard augmentation procedures.
Comparatively, Invariance through Inference makes it much smoother and slower degradation of
performance. This supports our hypothesis that adaptation powered by unsupervised learning can
significantly widen the generalization abilities of learning algorithms.

5.2 COMPARISONS WITH PAD

Table 2: Comparison against PAD

Distraction Zero-shot +PAD +ITI

None 835± 230 — —
Background 213± 247 279± 271 425± 292
Colors 230± 263 271± 300 402± 339
Camera Pose 319± 265 326± 259 412± 275

Similar to our approach, PAD pretrains the agent in a clean environment, and then adapts the
agent via unsupervised transfer, without assuming access to the target environment’s reward func-
tion (Hansen et al., 2020). To evaluate the robustness of PAD to distractions, we consider Distract-
ingCS with a fixed distraction intensity of 1.0. Table 2 compares the performance as the difference
between the episode returns before and after adaptation along with the episode returns in the clean
environment. It should be noted that PAD requires to pretrain a policy along with inverse dynamics
prediction objective. Thus we trained SAC with the auxiliary objective specifically for this experi-
ment.

Across all environments, we see that PAD struggles to adapt to distractions at test time. We sus-
pect this instability is caused by the large deviations in the latent variable distribution as a result of
changes in the target environment. In particular, we posit that the signal from PAD’s inverse dy-
namics head does not encourage the latent train and test distributions to match, which is a feature
specifically baked into Invariance through Inference.

5.3 FURTHER DISCUSSION

Ablation Studies In order to better understand the contribution of the different objectives to test-
time generalization, we perform a series of ablations in which we omit either the dynamics con-
sistency or the adversarial objectives. In these experiments, we use a pretrained DrQ-v2 network
for the algorithm’s base policy, and then perform adaptation across all distractions with an intensity
value of 1.0. The results in Table 3 show that the adversarial training is critical to adapt the latent
representation in the target domain. Performing adaptation using only the dynamics consistency
objective, i.e., argminF Jdyn (Eqn. 6) results in a significant decrease in performance. We theorize
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Table 3: Ablations with variants of Invariance through Inference that remove inverse, forward dy-
namics, or adversarial objectives. DrQ-v2 is used as a pretrained policy. We compute episode returns
from nine domains and five random seeds, and the results correspond to an intensity value of 1.0.

+ITI +ITI
Distraction Zero-shot +ITI w/o dyn. w/o adv.

Background 228± 232 602± 300 615± 289 176± 221
Colors 234± 245 536± 320 534± 327 117± 96
Camera Pose 345± 287 417± 284 407± 272 208± 235

that the dynamics consistency objective helps to refine the local consistency in the latent space when
the space in the target domain is close to that of the source domain. If the latent spaces significantly
differ, however, we suspect that the gradients may negatively affect convergence.

Compared to the adversarial objective, ablating the dynamics consistency objective has surprisingly
little effect on test-time generalization. It may be that the local structure of the latent space is pre-
served despite the distractions, which then diminishes the net effect of the dynamics consistency
objective. For example, one can think of the original points in the latent space simply being shifted
and affine-transformed. In this case, solely matching the distributions can effectively undo the trans-
formations, resulting in a representation that is consistent with the original, without the need to
explicitly align local structure. We suspect that this may be the case in the domains that we consid-
ered, and thus the effect of dynamics consistency objective gets obfuscated.

Pre-Filling the Replay Buffer In our experiments, we pre-filled both the original latent buffer and
the target observation buffer with data collected via random exploration. There is nothing particu-
larly special about this choice, random exploration may be subbed out with any exploration strategy.
One interesting strategy is to pre-fill the buffer with an exploration strategy that relies on unsuper-
vised pretraining. Given the recent success of these strategies on improving exploration, it seems
likely this could further improve performance. We leave this for future work.

6 CLOSING REMARKS

We introduced Invariance through Inference, a new method for leveraging unsupervised data to im-
prove the test-time adaptation of reinforcement learning systems. Empirical results demonstrate that
as discrepancies between training and deployment environments become more intense, Invariance
through Inference is more capable of adaptation than data augmentation techniques. The problem
of test-time adaptation in visual reinforcement learning using unsupervised test-time trajectories is
relatively new, but has thus far shown great promise.

Future work in this area might develop better techniques for the initial exploration phase. Many
of the environments we considered were quite reversible, with a small intrinsic dimensionality. Ex-
panding this class of methods to work on longer horizon multi-stage tasks is an intriguing possibility.
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The following provide a more detailed experimental evaluation of Invariance through Inference on
the Distracting Control Suite.

A PERFORMANCE IN ORIGINAL DOMAINS

Table 4 presents the average reward for the baseline SAC, SVEA, and DrQ-v2 on the non-distracted
source domains. The method labeled SAC+Inv denotes a soft actor-critic agent that is trained using
inverse dynamics as an additional auxiliary objective that is only used in making a comparison
against PAD.

Table 4: Performance in the original (clean) domains.

Domain SAC SAC+Inv SVEA DrQ-v2

ball in cup-catch 452± 303 999± 7 1007± 4 1007± 3
cartpole-balance 1022± 8 988± 26 996± 21 969± 123
cartpole-swingup 735± 167 885± 24 892± 15 874± 21
cheetah-run 309± 26 415± 59 448± 105 897± 45
finger-spin 615± 63 971± 64 1000± 37 997± 36
finger-turn easy 138± 28 658± 141 539± 317 945± 46
reacher-easy 381± 39 723± 383 812± 293 988± 28
walker-stand 438± 111 997± 6 1006± 4 996± 31
walker-walk 393± 117 915± 22 964± 34 980± 16

B ABLATIONS

Tables 5, 6, and 7 provide a per-domain ablation summary for background, color, and camera pose
distractions, respectively. As with the results in Table 3, we use DrQ-v2 as the pretrained policy and
present the mean reward and standard deviation for five random seeds.

Table 5: Ablation with Background distraction

+ITI +ITI +ITI +ITI
Domain Zero-shot +ITI w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 326± 196 749± 133 778± 142 777± 145 768± 146 268± 367
walker-stand 623± 233 866± 153 883± 110 859± 144 873± 129 402± 347
cartpole-swingup 82± 35 231± 128 395± 218 288± 163 246± 152 117± 43
ball in cup-catch 88± 39 394± 387 381± 416 400± 414 383± 381 93± 42
finger-spin 208± 327 783± 214 742± 190 772± 225 769± 223 74± 160
reacher-easy 98± 93 726± 149 713± 111 732± 104 694± 169 91± 54
cheetah-run 98± 90 411± 191 397± 152 398± 147 419± 157 12± 19
cartpole-balance 271± 101 336± 126 315± 98 367± 84 297± 121 264± 80
finger-turn easy 261± 244 920± 41 929± 57 899± 52 909± 74 256± 264

C ARCHITECTURES

This section describes the architectures of encoder F , discriminator D, inverse dynamics Cinv and
forward dynamics Cfwd. Encoder architectures follow the originally presented design choices of
each base policy except for DrQ-v2. We take the part of the original network that produces a latent
for the actor, and use it as an encoder F . In all of SAC (of the version used in (Hansen et al., 2021)),
SVEA and PAD, this shared latent is set to have dimension 100. For DrQ-v2, we took the entire
network architecture from SVEA. The discriminator consists of a linear layer with hidden dimension
100 followed by Layer Normalization (LN) (Ba et al., 2016) and tanh activation, and a three layer
multi-layer perceptron (MLP) with and ReLU activations. Inverse dynamics network Cinv is five
layer MLP and ReLU activations. It takes the concatenated latents as its input. Forward dynamics
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Table 6: Ablation with Color distraction

+ITI +ITI +ITI +ITI
Domain Zero-shot +ITI w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 80± 43 481± 313 468± 305 495± 330 472± 319 26± 5
walker-stand 278± 150 543± 231 603± 283 571± 259 548± 268 145± 31
cartpole-swingup 152± 84 552± 377 520± 359 507± 339 434± 395 94± 56
ball in cup-catch 239± 374 812± 225 857± 182 840± 251 843± 196 131± 46
finger-spin 349± 354 612± 345 561± 376 591± 351 603± 358 143± 172
reacher-easy 138± 135 490± 416 486± 392 486± 362 445± 405 140± 90
cheetah-run 193± 188 422± 282 416± 293 421± 277 406± 285 4± 2
cartpole-balance 481± 351 602± 366 576± 359 593± 351 583± 349 216± 94
finger-turn easy 194± 200 313± 290 323± 337 297± 316 304± 323 170± 57

Table 7: Ablation with Camera Pose distraction

+ITI +ITI +ITI +ITI
Domain Zero-shot +ITI w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 293± 195 375± 154 369± 168 389± 161 366± 164 63± 71
walker-stand 621± 202 704± 105 617± 155 661± 146 679± 93 330± 252
cartpole-swingup 286± 51 234± 123 211± 122 241± 140 281± 42 172± 132
ball in cup-catch 327± 227 462± 307 429± 321 566± 314 400± 337 199± 169
finger-spin 29± 25 252± 216 222± 209 275± 194 251± 206 32± 63
reacher-easy 917± 101 933± 47 925± 60 950± 72 940± 90 732± 159
cheetah-run 55± 20 142± 57 154± 90 141± 74 144± 61 24± 28
cartpole-balance 288± 46 307± 100 375± 83 379± 116 380± 64 217± 47
finger-turn easy 287± 89 346± 219 359± 122 377± 200 421± 180 160± 97

network Cfwd takes action and latent, and encode them separately followed by concatenation and
further layers. The action is fed it to a linear layer followed by LN, another linear layer and ReLU
with hidden dimension 100. The latent is fed to three layer MLP where the first activation is LN
and others are ReLU. The both encoded inputs are concatenated and fed to 4 layer MLP with ReLU
activations followed by LN and tanh activation. In all layers except for those explicitly mentioned,
hidden dimension is set to 1, 024.

D HYPERPARAMETERS

This section details the hyperparameter settings that were used for the experimental evaluation. Ta-
ble 8 lists the hyperparameters relevant to pretraining the dynamics networks, while Table 9 provides
those relevant to adaptation. For the base policies, we adopted the hyperparameter settings and ar-
chitecture choices from the original papers. Details for SAC and SVEA can be found in Hansen et al.
(2021), while Hansen et al. (2020) provides settings for PAD. The dimension of the latent zt differs
depending on the encoder of the base policy, but all of the encoders in our experiments produce a
latent with dimension 100.

Table 8: Hyperparameters for dynamics pretraining

Hyperparameter Value

Steps (Tdyn) 100, 000
Batch size 256
Optimizer RMSProp(α = 0.99, ϵ = 1.0× 10−8)
Learning rate (forward dynamics) 0.001
Learning rate (inverse dynamics) 0.001
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Table 9: Hyperparameters for adaptation

Hyperparameter Value

Capacity of buffers (Nbuf) 1, 000, 000
Batch size 256
Discriminator updates per step 5
Gradient clipping 0.01
Optimizer RMSProp(α = 0.99, ϵ = 1.0× 10−8)
Learning rate (encoder) 1.0× 10−4 (for DrQ-v2)

1.0× 10−5 (otherwise)
Learning rate (discriminator) 1.0× 10−4 (for DrQ-v2)

1.0× 10−5 (otherwise)
Learning rate (inverse dynamics) 1.0× 10−6
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