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ABSTRACT

We study the problem of minimizing the expected loss of a linear predictor
while constraining the sparsity of the predictor, i.e. bounding the number
of features used by the predictor. While this problem is generally NP-hard,
we describe several approximation algorithms. We analyze the performance
of our algorithms, focusing on the characterization of the trade-off between
accuracy and sparsity of the learned predictor in different scenarios.



1 Introduction

Although many features might be available for use in a prediction task,
it is often beneficial to use only a small subset of the available features.
Predictors that use only a small subset of features require a smaller memory
footprint and can be applied faster. Furthermore, in applications such as
medical diagnostics, obtaining each possible “feature” (e.g. test result) can
be costly, and so a predictor that uses only a small number of features is
desirable, even at the cost of a small degradation in performance relative to
a predictor that uses more features.

Focusing on linear prediction, it is generally NP-hard to find the best
predictor subject to a sparsity constraint, i.e. a bound on the number of
features used [Natarajan, 1995, Davis et al., 1997]. In this paper we show
that by compromising on prediction accuracy, one can learn sparse predictors
efficiently. Our main goal is to understand the precise trade-off between
accuracy and sparsity, and how this trade-off depends on properties of the
learning problem.

We now formally define our problem setting. A linear predictor is a
mapping x 7→ φ(〈w,x〉) where x ∈ X def= [−1,+1]d is a d-dimensional vector
of features, w ∈ Rd is the linear predictor, 〈w,x〉 is the inner-product op-
eration, and φ : R → Y is a scalar function that maps the scalar 〈w,x〉 to
the desired output space Y. For example, in binary classification problems
we have Y = {−1,+1} and a linear classification rule is x 7→ sgn(〈w,x〉).
In regression problems, Y = R, φ is the identity function, and the linear
regression rule is x 7→ 〈w,x〉.

The loss of a linear predictor w on an example (x, y) is assessed by a loss
function L(〈w,x〉, y). Note that φ does not appear in the above expression.
This is convenient since in some situations the loss also depends on the
pre-image of φ. For example, the hinge-loss that is used in Support Vector
Machines [Vapnik, 1998] is defined as L(〈w,x〉, y) = max{0, 1 − y〈w,x〉}.
Other notable examples of loss functions are the squared loss, L(〈w,x〉, y) =
(〈w,x〉− y)2, the absolute loss, L(〈w,x〉, y) = |〈w,x〉− y)|, and the logistic
loss, L(〈w,x〉, y) = log(1 + exp(−y〈w,x〉)). Throughout this paper, we
always assume:

Assumption 1 L : R×Y → R is convex with respect to its first argument.

Given a joint distribution over X ×Y, the risk of a linear predictor w is
its expected loss:

R(w) = E(x,y)[L(〈w,x〉, y)] . (1)
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Often, we do not know the distribution over examples, but instead approxi-
mate it using the uniform probability over a finite training set. In that case,
the empirical risk is 1

m

∑m
i=1 L(〈w,xi〉, yi). Since this expression is a special

case of the objective given in Equation (1), we stick to the more general def-
inition given in Equation (1). In some situations, one can add regularization
to the empirical risk. We discuss regularized risk in later sections.

The sparsity of a linear predictor w is defined to be the number of non-
zero elements of w and denoted using the `0 notation:

‖w‖0 = |{i : wi 6= 0}| . (2)

In this paper, we study the problem of learning sparse predictors. That
is, we are interested in linear predictors that on one hand achieves low risk
while on the other hand has low `0 norm. Sometime these two goals are
contradictory. Thus, we would like to understand the trade-off between
R(w) and ‖w‖0. Ultimately, to balance the trade-off one can aim at solving
the problem:

min
w:‖w‖0≤B0

R(w) . (3)

That is, find the predictor with minimal risk among all predictors with `0
norm bounded by some sparsity parameter B0. Regretfully, the constraint
‖w‖0 ≤ B0 is non-convex, and solving the optimization problem in Equa-
tion (3) is NP-hard [Natarajan, 1995, Davis et al., 1997].

To overcome the hardness result, two main approaches have been pro-
posed. In the first approach, we replace the non-convex constraint ‖w‖0 ≤
B0 with the convex constraint ‖w‖1 ≤ B1. The problem now becomes a
convex optimization problem that can be solved efficiently. It was observed
that the `1 norm sometimes encourages sparse solutions. But, it can be
shown that the solution of an `1 constrained risk minimization is not always
sparse. Moreover, it is important to quantify the sparsity one can obtain
using the `1 relaxation.

The second approach for overcoming the hardness of solving Equation (3)
is called forward greedy selection (a.k.a. Boosting). In this approach, we
start with the all-zeros predictor, and at each step we change a single element
of the predictor in a greedy manner, so as to maximize the decrease in risk
due to this change. Here, early stopping guarantees a bound on the sparsity
level of the output predictor. But, the price of early stopping is a sub-
optimal accuracy of the resulting predictor (i.e. the risk, R(w), can be
high).

In this paper we study trade-offs between accuracy and sparsity for `1
bounded predictors. We provide results of the following form: Given an
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excess risk parameter ε, for what sparsity level B, can we efficiently find
a predictor with sparsity level ‖w‖0 ≤ B and risk bounded by R(w̄) + ε,
where w̄ is an unknown reference predictor? And, how does B depend on
ε, and on properties of the loss function L, the distribution over examples,
and the reference vector w̄ ?

1.1 Additional notation and definitions

The set of integers {1, . . . , d} is denoted by [d]. For a vector w, the support
of w is defined to be: supp(w) = {i ∈ [d] : wi 6= 0}. For i ∈ [d], the vector
ei is the all zeros vector except 1 in the ith element.

The following definitions characterize two types of loss functions.

Definition 1 (Lipschitz loss) A loss function L : R × Y → R is ρ-
Lipschitz continuous if

∀y ∈ Y, ∀a, b |L(a, y)− L(b, y)| ≤ ρ|a− b| .

Examples of 1-Lipschitz loss functions are the hinge loss, L(a, y) =
max{0, 1 − ya} and the absolute loss, L(a, y) = |a − y|. See Section 3
for details.

Definition 2 (Smooth Loss) A loss function L : R×Y → R is β-smooth
if

∀y,∀a, b L(a+ b, y)− L(b, y) ≤ L′(b, y) a+
β a2

2
,

where L′(b, y) is the derivative of L with respect to its first argument at (b, y).

In Lemma 9 we also show how this translates into a smoothness property
of the risk function, R(w). Examples of smooth losses are the logistic loss
and the quadratic loss. See Section 3 for details.

Finally, the following definition characterizes properties of the risk func-
tion.

Definition 3 (Strong convexity) R(w) is said to be λ-strongly convex if

∀w,u, R(w)−R(u)− 〈∇R(u),w − u〉 ≥ λ

2
‖w − u‖22 .

Similarly, R(w) is λ-strongly convex on a set F ⊂ [d] if the above inequality
holds for all w,u such that supp(w) ⊆ F and supp(u) ⊆ F . Finally, R(w)
is (k, λ)-sparsely-strongly convex if for any F ⊂ [d] such that |F | ≤ k, R(w)
is λ-strongly convex on F .
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2 Main Results

We now state our main findings. We present four methods for learning
sparse predictors. In the first method, we first solve the `1 relaxed problem
and then use randomization for sparsifying the resulting predictor. In the
second method, we take a more direct approach and describe a forward
greedy selection algorithm for incrementally solving the `1 relaxed problem.
For this approach, we show how early stopping provides a trade-off between
sparsity and accuracy. Finally, in the last two methods we do not use the `1
constraint at all, but only relies on early stopping of another greedy method.
We show that these methods are guaranteed to be comparable to the other
methods and sometimes they significantly outperform the other methods.
They also has the advantage of not relying on any parameters.

2.1 Randomized sparsification of low `1 predictors

In the `1 relaxation approach, we first solve the problem

min
w:‖w‖1≤B1

R(w) . (4)

Let w? be an optimal solution of Equation (4). Although w? may be sparse
in some situations, in general we have no guarantees on ‖w?‖0. Our goal
is to find a sparse approximation of w?, while not paying too much in the
risk value. A simple way to do this is to use the following randomized
sparsification procedure.

Algorithm 1 Randomized Sparsification
Input: vector w? ∈ Rd

let w(0) = 0
for k = 1, 2, . . .

sample rk ∈ [d] according to
the distribution Pr[rk = j] = |w?j |/‖w?‖1

let w(k) = w(k−1) + sign(w?rk) erk
end
Output: ‖w

?‖1
k w(k)

Intuitively, we view the prediction 〈w,x〉 as the expected value of the
elements in x according to the distribution vector w/‖w‖1. The random-
ized sparsification procedure approximate this expected value by randomly
selecting elements from [d] according to the probability measure w/‖w‖1.
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Clearly, if we run the sparsification procedure for k iterations we have
‖w(k)‖0 ≤ k. The following theorem shows how the excess risk of w(k)

depends on k and on ‖w?‖1.

Theorem 1 Let L : R×Y → R be a loss function and let R(w) be as defined
in Equation (1), where the expectation is w.r.t. an arbitrary distribution
over X × Y. Let w? be the input of the randomized sparsification procedure
(Algorithm 1) and let w be its output after performing k iterations. Then,
for any ε > 0, with probability of at least 1/2 over the choice of r1, . . . , rk
we have R(w)−R(w?) ≤ ε provided that:

k ≥

{
2 ρ2 ‖w?‖21

ε2
if L is ρ Lipschitz

β ‖w?‖21
ε if L is β smooth

The above theorem implies that on average, if we repeat the randomized
procedure twice and choose the w with minimal risk then we obtain R(w)−
R(w?) ≤ ε. Furthermore, for any δ ∈ (0, 1), if we repeat the randomized
procedure dlog(1/δ)e times and choose the w with minimal risk, then the
probability that R(w)−R(w?) > ε is at most δ.

Let w̄ ∈ Rd be an arbitrary (unknown) predictor. The guarantees given
in Theorem 1 tells us that if ‖w̄‖1 = B1 then we can find a predictor with
R(w)−R(w̄) ≤ ε provided that k is sufficiently large, and the lower bound
on k depends on the `1 norm of w̄. We next show that by assuming more
on the risk function, we can have a result that involves the `0 norm of the
reference vector. In particular, we will assume that the risk is strongly
convex on the support of w̄. The importance of strongly convex risk in this
context, stems from the following lemma in which we show that if the risk
is strongly convex then ‖w̄‖21 can be bounded using the `0 norm of w̄ and
the strong convexity parameter.

Lemma 1 Let F ⊂ [d] and assume that R(w) is λ-strongly convex on F .
Let

w̄ = argmin
w:supp(w)=F

R(w) .

Then,

‖w̄‖1 ≤
√

2 ‖w̄‖0 (R(0)−R(w̄))
λ

.

Combining the above lemma with Theorem 1 we immediately get:
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Corollary 1 Let F ⊂ [d] and assume that R(w) is λ-strongly convex on F .
Let

w̄ = argmin
w:supp(w)=F

R(w) ,

let w? be a minimizer of Equation (4) with B1 =
√

2 ‖w̄‖0 (R(0)−R(w̄))
λ , and

let w be the output of the randomized sparsification procedure (Algorithm
1). Then, for any ε > 0, with probability of at least 0.5 over the choice of
r1, . . . , rk we have R(w)−R(w̄) ≤ ε provided that the following holds:

k ≥

{
‖w̄‖0 4 ρ2 (R(0)−R(w̄))

λ ε2
if L is ρ Lipschitz

‖w̄‖0 2β (R(0)−R(w̄))
λ ε if L is β smooth

In Section 3 we demonstrate cases in which the conditions of Corollary 1
holds. Note that we have two means to control the trade-off between sparsity
and accuracy. First, using the parameter ε. Second, using the reference
vector w̄, since by choosing w̄ for which the risk is strongly convex on
supp(w̄) we obtain better sparsity guarantee, but the price we pay is that
this restriction might increase the risk of w̄. For more details see Section 3.

2.2 Forward Greedy Selection

The approach described in the previous subsection involves two steps. First,
we solve the `1 relaxed problem given in Equation (4) and only then we ap-
ply the randomized sparsification procedure. In this section we describe
a more direct approach in which we solve Equation (4) using an iterative
algorithm that alters a single element of w at each iteration. We derive
upper bounds on the number of iterations required to achieve an ε accurate
solution, which immediately translates to bounds on the sparsity of the ap-
proximated solution. Variants of the algorithm below were proposed before
by several authors [Frank and Wolfe, 1956, Zhang, 2003, Clarckson, 2008].
The version we have here includes closed form definition of the step size and
a stopping criterion that depends on the desired accuracy ε.
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Algorithm 2 Forward Greedy Selection
Parameters: positive scalars B1, ε

let w(0) = 0
for k = 0, 1, 2, . . .

let θ(k) = ∇R(w(k))
let rk = argmaxj |θ

(k)
j |

let ηk = min
{

1, (〈θ(k),w(k)〉+B1 ‖θ(k)‖∞)
4B2

1 β

}
let w(k+1) = (1− ηk)w(k) + ηk sgn(−θ(k)

rk )B1 erk

Stopping condition: 〈θ(k),w(k)〉+B1 ‖θ(k)‖∞ ≤ ε

The algorithm initializes the predictor vector to be the zero vector,
w(1) = 0. On iteration k, we first choose a feature by calculating the gradi-
ent of R at w(k) (denoted θ(k)) and finding its largest element in absolute
value. Then, we calculate a step size ηk and update the predictor to be a
convex combination of the previous predictor and the singleton B1 erk (with
appropriate sign). The step size and the stopping criterion are based on our
analysis. Note that the update form ensures us that for all k, ‖w(k)‖1 ≤ B1

and ‖w(k)‖0 ≤ k.
The following theorem upper bounds the number of iterations required

by the Forward Greedy Selection algorithm. The theorem holds for the case
of smooth loss functions.

Theorem 2 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X × Y. Suppose that the Forward Greedy Selec-
tion procedure (Algorithm 2) is run with parameters B1, ε and let w? be a
minimizer of Equation (4). Then, the algorithm terminates after at most

k ≤
⌈

8β B2
1

ε

⌉
iterations, and at termination, R(w(k))−R(w?) ≤ ε.

Since a bound on the number of iterations of the Forward Greedy Selec-
tion algorithm translates into a bound on the sparsity of the solution, we see
that the guarantee we obtain from Theorem 2 is similar to the guarantee we
obtain from Theorem 1 for the randomized sparsification. The advantages
of the direct approach we take here is its simplicity – we do not need to solve
Equation (4) in advance and we do not need to rely on randomization.
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Next, we turn to derive sparsification result for the case that L is ρ-
Lipschitz but is not β-smooth. To do so, we approximate L by a β-smooth
function. This can always be done, as the following lemma indicates.

Lemma 2 Let L be a proper, convex, ρ-Lipschitz loss function and let L̃ be
defined as follows

∀y ∈ Y, L̃(a, y) = inf
v

[
β

2
v2 + L(a− v, y)

]
. (5)

Then, L̃ is β-smooth and

∀y ∈ Y, a ∈ R, 0 ≤ L(a, y)− L̃(a, y) ≤ ρ2

2β
.

Let R̃(w) = E[L̃(〈w,x〉, y)]. Clearly, for all w we have 0 ≤ R(w) −
R̃(w) ≤ ρ2

2β . As a direct corollary we obtain:

Corollary 2 Let L : R× Y → R be a ρ-Lipschitz convex loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X×Y. Suppose that the Forward Greedy Selection
procedure (Algorithm 2) is run with parameters B1, ε on the function R̃(w) =
E[L̃(〈w,x〉, y)], where L̃ is as defined in Equation (5) and β = ρ2

ε . Then,
the algorithm stops after at most

k ≤
⌈

8 ρ2B2
1

ε2

⌉
iterations, and when it stops we have R(w(k)) − R(w?) ≤ ε, where w? is a
minimizer of Equation (4).

The above corollary gives a similar guarantee to the one given in Theo-
rem 1 for the case of Lipschitz loss functions.

Finally, if the risk function is strongly convex on the support of a vector
w̄, we can obtain the same guarantee as in Corollary 1 for the Forward
Greedy Selection algorithm by combining Theorem 2 and Corollary 2 with
the bound on the `1 norm of w̄ given in Lemma 1.

To summarize this subsection, we have shown that the Forward Greedy
Selection procedure provides the same guarantees as the method which first
solves the `1 relaxed problem and then uses randomized sparsification. The
Forward Greedy Selection procedure is a deterministic, more direct, simple,
and efficient approach. In the next subsection we provide an even better
method.
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2.3 Fully Corrective Greedy Selection

The Forward Greedy Selection method described in the previous subsection
is a nice and simple approach. However, intuitively, this method is wasteful
since at each iteration, we may increase the support of the solution, although
it is possible that we can reduce the risk by only modifying the weights of
the current support. It makes sense to first fully adjust the weights of
the current features so as to minimize the risk, and only then add a fresh
feature to the support of the solution. In this subsection we present our last
method, which exactly do this. In addition, the new method do not enforce
the constraint ‖w‖1 ≤ B1 at all. This stands in contrast to the two methods
described previously in which we are required to tune the parameter B1 in
advance. Nevertheless, as we will show below, the new method achieves the
same guarantees as the previous methods and sometime it even achieves
improved guarantees. At the end of the subsection, we present additional
post-processing procedure which does not modify the sparsity of the solution
but may improve its accuracy.

Algorithm 3 Fully Corrective Forward Greedy Selection
let w(0) = 0
let F (0) = ∅
for k = 1, 2, . . .

let rk = argminj minαR(w(k−1) + αej)
let F (k) = F (k−1) ∪ {rk}
let w(k) = argminwR(w) s.t. supp(w) ⊆ F (k)

end

The fully corrective algorithm is similar to the non corrective algorithm
described in the previous subsection with two main differences. First, in
Algorithm 3 we adjust the weights so as to minimize the risk over the features
aggregated so far. This is what we mean by fully corrective. Second, we now
do not enforce the constraint ‖w‖1 ≤ B1.

Although in Algorithm 3 we choose rk to be the feature which leads to
the largest decrease of the risk, from the proof, we can see that identical
results hold by choosing

rk = argmax
j
|∇R(w(k))j |

as in Algorithm 2. Moreover, if R(w) can be represented as R(w) = Q(Xw),
where each row of the matrix X is one example, and let Xj be the j-th
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column of X, with normalization 〈Xj , Xj〉 = 1, then we may also choose rk
to optimize the quadratic approximation function

rk = argmin
j

min
α

∥∥∥αXj −∇Q(Xw(k−1))
∥∥∥2

2
,

and again, identical results hold. For prediction problems, this formulation
leads to the fully corrective version of functional gradient boosting method
[Friedman, 2001], where this quadratic approximation is equivalent to a
regression problem.

We now turn to the analysis of the fully corrective algorithm. Our first
theorem provides a similar guarantee to the one given in Theorem 2. How-
ever, as mentioned before, the fully corrective algorithm is parameters free,
and therefore we obtain a guarantee which holds simultaneously for all values
of B1.

Theorem 3 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X×Y. Suppose that the Fully corrective procedure
(Algorithm 3) is run for k iterations. Then, for any scalar ε > 0 and vector
w̄ such that

k ≥ 2β ‖w̄‖21
ε

we have R(w(k))−R(w̄) ≤ ε.

Naturally, if our loss function is Lipschitz but is not smooth, we can
run the fully corrective algorithm on the modified loss L̃ (see Lemma 2)
and obtain a guarantee similar to the one in Corollary 2. Similarly, if the
risk function is strongly convex on the support of w̄, we can use Lemma 1
to obtain the same guarantee as in Corollary 1. Therefore, we have shown
that the fully corrective method provides the same guarantees as the previ-
ous approaches, with the important advantage that B1 appears only in the
analysis but does not effect the algorithm.

Finally, we show that with a more restricted assumption on the risk
function, we can obtain an exponentially better dependence on 1

ε for the
fully corrective algorithm.

Theorem 4 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X×Y. Suppose that the Fully corrective procedure
(Algorithm 3) is run for k iterations. Let λ > 0 be a scalar and assume that
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R is (k + ‖w̄‖0, λ)-sparsely-strongly convex. Then, for any ε > 0 , and
w̄ ∈ Rd such that

k ≥ ‖w̄‖0
β

λ
log
(
R(0)−R(w̄)

ε

)
,

we have R(w(k)) ≤ R(w̄) + ε.

Remark 1 It is possible to show that the result of Theorem 4 still holds if
we use an `2 regularized risk, that is, define R(w) = E[L(〈w,x〉, y)]+ λ

2‖w‖
2
2.

Note that in this case, the optimal solution will in general be dense, since
the `2 regularization tends to spread the weights of the solution over many
features. However, since Theorem 4 holds for any reference vector w̄, and
not only for the minimizer of the risk, it suffices that there will be some
sparse vector w̄ that achieves a low risk. In this case, Theorem 4 guarantees
that we will find w(k) whose risk is only slightly higher than that of w̄ and
whose sparsity is only slightly worse than w̄.

Adding Replacement Steps as Post-Processing

We can always try to improve the solution without changing its sparsity
level. The following procedure suggests one way how to do this. The basic
idea is simple. We first perform one fully corrective forward selection step,
and second we remove the feature that has the smallest weight. We accept
such a replacement operation only if it leads to a smaller value of R(w).
The resulting procedure is summarized in Algorithm 4.

Algorithm 4 Post Processing Replacement Steps
Input: F (0) ⊂ [d]
for t = 0, 1, . . .

let w(t) = argminwR(w) s.t. supp(w) ⊆ F (t)

let rt+1 = argminj minαR(w(t) + αej)
let F ′ = F (t) ∪ {rt+1}
let w′ = argminwR(w) s.t. supp(w) ⊆ F ′
let q = argminj∈F ′ |w′j |
let δt = R(w(t))−R(w′ − w′qeq)
if (δt ≤ 0) break
let F (t+1) = F ′ − {q}

end
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We may also use a slightly simpler replacement procedure that skips the
optimization step in F ′. That is, we simultaneously take

rt+1 = argmax
j
|∇R(w(t))j |, q = argmin

j∈F (k)

|w(t)
j |,

and let F (t+1) = (F (t)∪{rt+1})−{q}. Similar results hold for this alternative.
Clearly, Algorithm 4 can only improve the objective. Thus, for any t

we have R(w(t)) ≤ R(w(0)). The following theorem states that we can have
an actual decrease of R by running Algorithm 4 as a post processing to
Algorithm 3.

Theorem 5 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X × Y. Let λ > 0 be a scalar, k be an integer,
and w̄ ∈ Rd be a vector, such that

k + 1 ≥ ‖w̄‖0(1 + 4β2/λ2) ,

and assume that R is (k+1+‖w̄‖0, λ)-sparsely-strongly convex. Additionally,
let T be an integer such that

T ≥ λ(k + 1− ‖w̄‖0)
2β

log
(
R(0)−R(w̄)

ε

)
.

Then, if the Fully corrective procedure (Algorithm 3) is run for k iterations
and its last predictor is provided as input for the post-processing Replacement
procedure (Algorithm 4), which is then run for T iterations, then when the
procedure terminates at time t (which may be smaller than T ), we have
R(w(t))−R(w̄) ≤ ε.

The above theorem tells us that under the strong convexity condition,
one may approximate R(w̄) to arbitrary precision using a number of features
which is at most a constant (1 + 4β2/λ2) approximation factor. Comparing
this sparsity guarantee to the guarantee given in Theorem 4 we note that the
sparsity level in Theorem 5 does not depend on log(1/ε). Only the runtime
depends on the desired accuracy level ε. In particular, if k is close to its
lower bound, then the required number of iterations of Algorithm 4 becomes
O
(
‖w̄‖0 βλ log(R(0)−R(w̄)

ε )
)

, which matches the bound on the number of it-
erations of Algorithm 3 given in Theorem 4. However, since Algorithm 4
does not increase the sparsity of the solution, decreasing ε solely translates
to an increased runtime while not affecting the sparsity of the solution. On
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the flip side, the dependence of the sparsity of the solution on β/λ is linear
in Theorem 4 and quadratic in Theorem 5.

It is worth pointing out that the result in Theorem 5 is stronger than
results in the compressed sensing literature, which consider the least squares
loss, and the bounds are of the flavor R(w̄(t)) ≤ CR(w̄) with some constant
C > 1. For such a bound to be useful, we have to assume that R(w̄) is close
to zero. This assumption is not needed in Theorem 5. However if we do
assume that R(w̄) is close to the global minimum, then it is not difficult to
see that w̄(t) is close to w̄ from the sparse strong convexity assumption. This
implies a recovery result similar to those in compressed sensing. Therefore
from the numerical optimization point of view, our analysis is more general
than compressed sensing, and the latter may be regarded as a specialized
consequence of our result.

Note that a more sophisticated combination of forward and backward
updates is done by the FoBa algorithm of Zhang [2008]. The more aggressive
backward steps in FoBa can lead to further improvement, in the sense that
one may solve the sparse optimization problem exactly (that is, w(k) contains
only k = ‖w̄‖0 features). However, this requires additional assumptions.
Most notably, it requires that w̄ will be the unique minimizer of R(w). In
contrast, in our case w̄ can be an arbitrary competing vector, a fact that
gives us an additional control on the trade-off between sparsity and accuracy.
See the discussion in Section 5 for more details.

3 Examples

In this section we provide concrete examples that exemplify the usefulness
of the bounds stated in the previous section.

We first list some loss functions.

Squared loss: L(a, y) = 1
2(a− y)2. The domain Y is usually taken to be

a bounded subset of R. The second derivative of L w.r.t. the first argument
is the constant 1 and therefore the squared loss is 1-smooth.

Absolute loss: L(a, y) = |a−y|. The domain Y is again a bounded subset
of R. Now, L is not differentiable. However, L is 1-Lipschitz.

Logistic-loss: L(a, y) = log(1 + exp(−y a)). The domain Y is {+1,−1}.
The derivative of L w.r.t. the first argument is the function L′(a, y) =
−y

1+exp(y a) . Since L′(a, y) ∈ [−1, 1] we get that L is 1-Lipschitz. In addition,
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the second derivative of L is −y 1
1+exp(y a)

1
1+exp(−y a) ∈ [−1

4 ,
1
4 ] and therefore

L is 1
4 smooth.

Hinge-loss: L(a, y) = max{0, 1 − y a}. The domain Y is {+1,−1}. Like
the absolute loss, the hinge-loss is not differentiable but is 1 Lipschitz.

Theorem 1 implies that without making any additional assumption on
the distribution over X × Y, for any B1 and ε we can learn a predictor w
such that

R(w) ≤ min
w′:‖w′‖1≤B1

R(w′) + ε

and ‖w‖0 ≤
8
√

2B2
1

ε2
for absolute-loss and hinge-loss, ‖w‖0 ≤

B2
1
ε for squared-

loss, and ‖w‖0 ≤
B2

1
4 ε for logistic-loss.

Next, we discuss possible applications of Theorems 4-5. Let L be the
squared-loss function and assume that Y = [+1,−1]. Therefore, for any w̄
we have R(0)−R(w̄) ≤ 1. We can rewrite R(w) as

R(w) =
1
2

E[(〈w,x〉 − y)2]

=
1
2
wT E[x xT ] w + 〈w,E[y x]〉+

1
2

E[y2] .

Thus, R(w) is a quadratic function of w and therefore is λ-strongly convex
where λ is the minimal eigenvalue of the matrix E[x xT ]. Assuming that
the instances x are uniformly distributed over {+1,−1}d, we obtain that for
any v

vT E[x xT ] v = E[(〈v,x〉)2]

= E[
∑
i

v2
i x

2
i ] + E[

∑
i,j

vivjxixj ] = ‖v‖22 ,

that is, E[x xT ] is the identity matrix. This means that R is 1-strongly
convex. Applying Theorem 4 we obtain that for any w̄ we can efficiently find
w such that R(w) ≤ R(w̄) + ε and ‖w‖0 ≤ 2 ‖w̄‖0 log(1/ε). Furthermore,
applying Theorem 5 we obtain that one can find w such that R(w) is only
slightly larger than R(w̄) and ‖w‖0 ≤ 5 ‖w̄‖0.

The argument above relies on the assumption that we fully know the
conditional probability of the target y. This is a rather unrealistic assump-
tion. It is more reasonable to assume that we have an i.i.d. sample of n
examples from the distribution over X ×Y, where n� d, and let us redefine
R to be the uniform distribution over this sample. Now, R(w) is no longer
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strongly convex, as the rank of the matrix E[x xT ] is n, while the dimension
of the matrix is d� n. However, with high probability over the choice of the
n examples, R(w) is (k, λ)-sparsely-strongly convex with n = O(k ln d) and
λ = 1

2 . This condition is often referred to as RIP (restricted isometry prop-
erty) in the compressed sensing literature [Candes and Tao, 2005], which
follows from concentration results in the random matrix literature. There-
fore, we can still apply Theorem 4 and get that for any w̄ and k, such that
k ≥ 2 ‖w̄‖0 log(1/ε), we can efficiently find w such that R(w) − R(w̄) ≤ ε
and ‖w‖0 ≤ k.

The strong convexity assumption given in Theorems 4-5 is much stronger
than the one given in Corollary 1. To see this, note that the condition given
in Theorem 4 breaks down even if we merely duplicate a single feature, while
the condition of Corollary 1 is not effected by duplication of features. In
fact, the condition of Corollary 1 still holds even if we construct many new
features from the original features as long as w̄ will not change. Of course,
the price we pay for relying on a much weaker assumption is an exponentially
worse dependence on 1/ε.

Finally, as mentioned at the end of the previous section, the guarantees
of Theorems 4-5 hold even if we add to R(w) an `2 regularization term. For
example, it holds for the problem of `2 regularized logistic regression:

R(w) = E[log(1 + exp(−y 〈w,x〉))] + λ
2‖w‖

2
2 .

Since now R(w) is everywhere strongly convex, we get that for any w̄ we
can efficiently find w such that R(w) ≤ R(w̄) + ε and ‖w‖0 ≤ O(‖w̄‖0) in
time O(log(1/ε)). Here, it is important to emphasize that the minimizer of
R(w) will in general be dense, since the `2 regularization tends to spread
weights on many features. However, Theorems 4-5 hold for any reference
vector, and not only for the minimizer of R(w). It is therefore suffices that
there is a sparse vector which gives a reasonable approximation to R(w),
and the theorem tells us that we will be competitive with this vector. We
thus have two ways to control the trade-off between accuracy (i.e. low risk)
and sparsity. One way is through the parameter ε. The second way is by
choosing the reference vector w̄. We can have a sparser reference vector,
over a non-correlated set of features, but this can also lead to a reference
vector with higher risk.
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4 Tightness

In this section we argue that some of the relations between sparsity, accu-
racy, and the `1 norm, derived in Section 2 are tight, and better guarantees
cannot be obtained without adding more assumptions. This means that the
procedures of Section 2 are optimal in the sense that no other procedure can
yield a better sparsity guarantees (better by more than a constant factor).

The following two theorems establish the tightness of the bounds given
in Theorem 1.

Theorem 6 For any B1 > 2 and l > 0, there exists a data distribution,
such that a (dense) predictor w with ‖w‖1 = B1 can achieve mean absolute-
error (L(a, b) = |a− b|) less than l, but for any ε ≤ 0.1, at least B2

1/(45 ε2)
features must be used for achieving mean absolute-error less than ε.

Theorem 7 For any B1 > 2 and l > 0, there exists a data distribution,
such that a (dense) predictor w with ‖w‖1 = B1 can achieve mean squared-
error (L(a, b) = (a − b)2) less than l, but for any ε ≤ 0.1, at least B2

1/(8 ε)
features must be used for achieving mean squared-error less than ε.

5 Related Work

The use of the `1-norm as a surrogate for sparsity has a long history (e.g. Tib-
shirani [1996] and the references therein), and much work has been done
on understanding the relationship between the `1-norm and sparsity. The
randomized sparsification procedure we suggest was previously proposed
by Schapire et al. [1997], as a tool for obtaining generalization bounds for
AdaBoost (but their bound also depends on log(m), where m is the num-
ber of examples in the input distribution). Studying neural networks with
bounded fan-in, Lee et al. [1996] provided an upper bound similar to The-
orem 2, for the special case of the squared-error loss. See also Jones [1992],
Barron [1993]. The result we derive in this paper holds for a larger family
of loss functions and we also obtain a dependence on `0 with the additional
strong convexity requirement.

Studying sparsity properties of the Lasso, and feature selection tech-
niques, several recent papers establish exact recovery of a sparse predictor
based on the `1 relaxation (e.g. Zhao and Yu [2006] and the references
therein). The strongest result is for the FoBa algorithm of Zhang [2008].
However, for exact recovery much stronger conditions are required. In par-
ticular, all results that establish exact recovery require that the data will be
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generated (at least approximately) by a sparse predictor. In contrast, our
bounds hold with respect to any reference predictor w̄. In practical applica-
tion, such as medical diagnostic, this is a big difference. For example, if the
task is to predict illness using medical tests, it is very natural to assume that
there exists a very sparse predictor with error of say 0.1, while a very dense
predictor is required to achieve error below 0.05. In this case, exact recovery
of a sparse predictor is impossible (because the best predictor is dense), but
one can still compromise on the accuracy and achieve a very sparse predictor
with a reasonable level of accuracy. Another requirement for exact recovery
is that the magnitude of any non-zero element of w is large. We do not have
such a requirement. Finally, all exact recovery results require the sparse
eigenvalue condition. This condition is often referred to as RIP (restricted
isometry property) in the compressed sensing literature [Candes and Tao,
2005]. In contrast, as discussed in previous sections, some of our results
require much weaker conditions. This is attributed to the fact that our goal
is different – we do not care about finding w? exactly but solely concern
about finding some w, with a good balance of low risk and sparsity. By
compromising on accuracy, we get sparsity guarantees under much milder
conditions.

As mentioned previously, recent work on compressed sensing [Candes
and Tao, 2005, Candes, 2006, Donoho, 2006b,a] also provide sufficient con-
ditions for when the minimizer of the `1 relaxed problem is also the solution
of the `0 problem. But, again, the assumptions are much stronger. We
note that in compressed sensing applications, we have a control on the dis-
tribution over X (i.e. the design matrix). Therefore, the sparse eigenvalue
condition (equivalently, RIP) is under our control. In contrast, in learning
problems the distribution over X is provided by nature, and RIP conditions
usually do not hold.

Forward greedy selection algorithms are called boosting in the machine
learning literature (see e.g. Freund and Schapire [1999]). For regression
with the quadratic loss, this method is referred to as matching pursuit in
the signal processing community [Mallat and Zhang, 1993]. It was observed
empirically that fully corrective algorithms are usually more efficient than
their corresponding non-corrective versions (see e.g. [Warmuth et al., 2006,
2008]). In this paper we give a partial theoretical explanation to this em-
pirical observation.

Finally, `1 norm have also been studies in learning theory as a regulariza-
tion technique. For example, Littlestone [1988] showed that multiplicative
online learning algorithms can be competitive with a sparse predictor, even
when there are many irrelevant features, while additive algorithms are likely
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to make much more errors. This was later explained by the fact that mul-
tiplicative algorithms can be derived from an entropy regularization, which
is strongly convex with respect to the `1 norm, while additive algorithms
are derived from an `2 regularization (see e.g. Shalev-Shwartz [2007]). Sim-
ilarly, Ng [2004] considered PAC learning of a sparse predictor, and showed
that `1-norm regularization is competitive with the best sparse predictor,
while `2-regularization does not appear to be. In such a scenario we are
not interested in the resulting predictor being sparse (it won’t necessarily
be sparse), but only in its generalization performance. In contrast, in this
paper we are interested in the resulting predictor being sparse, but do not
study `1-regularized learning. The fact that we learn a sparse predictor can
be used to derive generalization bounds as well (for example, as in Schapire
et al. [1997]). However, if we are only interested in prediction performance
and generalization bounds, it is not necessarily true that sparsity is the best
mean for obtaining good generalization properties.

6 Discussion and future work

We described and analyzed efficient methods for learning sparse predictors.
The sparsity bounds we obtain depend on the accuracy of the predictor.
They also depend on the `1 norm of a reference predictor either explicitly
(Theorems 1, 2, 3) or implicitly by imposing a strong convexity assump-
tion and bounding the `1 norm of the reference vector using its `0 norm
(Corollary 1 and Theorems 4-5). In all cases, the trade-off between sparsity
and accuracy is controlled by the excess loss allowed (ε) and by choosing a
reference vector with low `1 norm.

Some of the sparseness bounds we derived are tight, in the sense that
there exists a distribution for which the relation between ‖w‖0, ‖w̄‖1, and
ε cannot be improved. Due to lack of space we leave those results for a long
version of this manuscript.

There are several possible extensions to this work. First, our fully cor-
rective greedy selection algorithms assume that the domain of R is the entire
Euclidean space. In some cases it is desirable to impose additional convex
constraints on w. We believe that our proof technique can be generalized
to include simple constraints, such as box constraints. Another interesting
direction is to further quantify the advantage of fully corrective methods
over non-fully corrective methods.

Currently, our technique for obtaining bounds that involve the `0 of w̄
assumes that the risk R is strongly convex on the support of w̄. While this
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condition is reasonable in the case of regression problems with the squared
loss, it is less likely to hold in classification problems, when other loss func-
tions are used. Developing alternative techniques for obtaining bounds that
involve the `0 norm of w̄ in binary classification problems is therefore a
challenging task.
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A Proofs

A.1 Proof of Theorem 1

Without loss of generality, we assume that w?
i ≥ 0 for all i. Let r =

(r1, . . . , rk) be the sequence of random indices the randomized sparsification
procedure chooses, and let w be the output of the procedure. Note that w
is a function of r and therefore it is a random variable.

Let x be a given vector. Then, it is easy to verify that

Er[〈w,x〉] = 〈w?,x〉 . (6)

In the following, we first analyze the expected value of R(w)−R(w?)for the
two possible assumptions on L.

Lemma 3 Assume that the conditions of Theorem 1 holds and that L is
β-smooth. Then:

Er [R(w)−R(w?)] ≤ β ‖w?‖21
2 k

.

Proof Since L is β-smooth, we can use the first inequality in Lemma 9 to
get that

R(w)−R(w?) ≤ 〈∇R(w?),w −w?〉+
β

2
Ex[(〈w −w?,x〉)2] .
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Taking expectation over r and using Equation (6) we get

Er[R(w)−R(w?)] ≤ β

2
Er,x[(〈w −w?,x〉)2]

=
β

2
Ex,r[(〈w −w?,x〉)2] ,

where in the last equality we used the linearity of expectation. Next, we
note that for any x the expression Er

[
(〈w −w?,x〉)2]

]
is the variance of the

random variable 〈w,x〉 = ‖w?‖1
k

∑k
i=1 xri . Since each random variable xri

is in [−1,+1], its variance is at most 1. Therefore, using the fact that the
random variables are independent, we obtain that the variance of 〈w,x〉 is
at most ‖w

?‖21
k . This holds for any x and therefore also for the expectation

over x, and this concludes our proof.

Next, we deal with the case of Lipschitz loss function.

Lemma 4 Assume that the conditions of Theorem 1 holds and that L is
ρ-Lipschitz. Then:

Er [R(w)−R(w?)] ≤ ρ ‖w?‖1√
k

.

Proof Since L is ρ-Lipschitz, we have for all (x, y)

L(〈w,x〉, y)− L(〈w?,x〉, y) ≤ ρ |〈w,x〉 − 〈w?,x〉| .

Taking expectation over r and (x, y) we get

Er[R(w)]−R(w?) ≤ ρExEr[|〈w,x〉 − 〈w?,x〉|]

≤ ρ
√

ExEr[|〈w,x〉 − 〈w?,x〉|2] ,

where the last inequality follows from Jensen’s inequality. The same argu-
ment as in the previous lemma concludes our proof.

Equipped with the above we are now ready to prove Theorem 1. First,
since w? is a minimizer of R over the `1 ball of radius w? and since w is in
this ball, we obtain that R(w)−R(w?) is a non-negative random variable.
Therefore, using Markov inequality, we get that with probability of at least
0.5 we have

R(w)−R(w?) ≤ 2Er[R(w)−R(w?)] .

Plugging the bounds on Er[R(w) − R(w?)] from the previous two lemmas,
letting the right-hand side be ε and solving for k we conclude our proof.
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A.2 Proof of Lemma 1

Since supp(w̄) = F and since w̄ is optimal over the features in F we have
that 〈∇R(w̄), w̄〉 = 0. Therefore, using the assumption that R is λ-strongly
convex on F we obtain

R(0)−R(w̄) = R(0)−R(w̄)− 〈∇R(w̄),0− w̄〉

≥ λ

2
‖w̄ − 0‖22

which implies that

‖w̄‖22 ≤
2 (R(0)−R(w̄))

λ
.

Finally, we use the fact that w̄ has effective dimension of ‖w̄‖0 to get that

‖w̄‖21 ≤ ‖w̄‖0 ‖w̄‖22.

Combining the above inequalities we conclude our proof.

A.3 Proof of Theorem 2

For all t, let εt = R(w(t))−R(w?) be the sub-optimality of the algorithm at
iteration t. The following lemma provides us with an upper bound on εt. Its
proof uses duality arguments (see for example Rockafellar [1970], Borwein
and Lewis [2006]).

Lemma 5 〈θ(k),w(k)〉+B1 ‖θ(k)‖∞ ≥ εk.

Proof We denote the Fenchel conjugate of R by R?. The Fenchel dual
problem of Equation (4) is to maximize over θ ∈ Rd the objective −R?(θ)−
B1 ‖θ‖∞. Therefore, the weak duality theorem tells us that for any θ

−R?(θ)−B1 ‖θ‖∞ ≤ R(w?) ≤ R(w(k)) .

Thus,
εk ≤ R(w(k)) +R?(θ) +B1 ‖θ‖∞ . (7)

In particular, it holds for θ(k) = ∇R(w(k)). Next, we use [Borwein and
Lewis, 2006, Proposition 3.3.4] to get that for θ(k) = ∇R(w(k)) we have
R(w(k)) + R?(θ(k)) = 〈w(k),θ(k)〉. Combining this with Equation (7) we
conclude our proof.

The next lemma analyzes the progress of the algorithm.
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Lemma 6 The sequence ε1, ε2, . . . is monotonically non-increasing. Fur-
thermore, let T be the minimal integer such that εT ≤ 4βB2

1 . Then, for
t < T we have εt − εt+1 ≥ 2β B2

1 and for t ≥ T we have

εt − εt+1 ≥ ε2t
1

8β B2
1

.

Proof To simplify the proof, we assume without loss of generality that
sgn(θ(t)

rt ) = −1. Denote u(t) = ηt(B1ert − w(t)) and thus we can rewrite
the update rule as w(t+1) = (1 − ηt)w(t) + ηtB1 ert = w(t) + u(t). Let
∆t = εt − εt+1 = R(w(t)) − R(w(t+1)). Using the assumption that L is
β-smooth and Lemma 9 we obtain that

∆t ≥ − 〈θ(t),u(t)〉 − β ‖u(t)‖21
2

.

Next, we use the definition of u(t), the triangle inequality, and the fact that
‖w(t)‖1 ≤ B1 to get that

‖u(t)‖1 ≤ ηt(‖B1ert‖1 + ‖w(t)‖1) ≤ 2 ηtB1 .

Therefore,

∆t ≥ −〈θ(t),u(t)〉 − 2β η2
t B

2
1 (8)

= ηt

(
〈θ(t),w(t)〉 −B1 〈θ(t), ert〉

)
− 2β η2

t B
2
1 .

The definition of rt implies that 〈θ(t), ert〉 = −‖θ(t)‖∞. Therefore, we can
invoke Lemma 5 and obtain that 0 ≤ εt ≤ 〈θ(t),w(t)〉 −B1 〈θ(t), ert〉. Next,
we note that ηt is defined to be the maximizer of the right-hand side of
Equation (8) over [0, 1]. Therefore, for any η ∈ [0, 1] we have

∆t ≥ η
(
〈θ(t),w(t)〉 −B1 〈θ(t), ert〉

)
− 2β η2B2

1

≥ η εt − 2β η2B2
1 . (9)

If εt ≤ 4βB2
1 then by setting η = εt

4β B2
1

we obtain ∆t ≥ ε2t
8β B2

1
. If εt > 4βB2

1

then setting η = 1 gives ∆t ≥ 2βB2
1 .

We are now ready to prove Theorem 2. First, the inequality (9) with
η = 1 and t = 0 implies that

ε0 − ε1 = ∆0 ≥ ε0 − 2βB2
1 .

This means that ε1 ≤ 2βB2
1 . Therefore starting from t ≥ 1 we can apply

the same argument of Lemma 10 and this concludes our proof.
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A.4 Proof of Lemma 2

For simplicity, we omit the second argument of L and L̃ throughout the
proof. We first prove that L̃ is β-smooth. The proof uses ideas from con-
vex analysis. We refer the reader to Rockafellar [1970], Borwein and Lewis
[2006] and see also a similar derivation in Shalev-Shwartz and Singer [2008].
The definition of L̃ implies that it is the infimal convolution of L and the
quadratic function (β/2)v2. Therefore, using the infimal convolution theo-
rem [Rockafellar, 1970, Chapter 16] we obtain that the Fenchel conjugate of
L̃ is L̃?(θ) = 1

2β θ
2 +L?(θ), where L? is the Fenchel conjugate of L. Since the

quadratic function is strongly convex we obtain that L̃? is a 1/β strongly con-
vex function, and thus its Fenchel conjugate, namely L̃, is β-smooth [Shalev-
Shwartz, 2007, Lemma 15]. Next, we turn to prove that |L(a)− L̃(a)| ≤ ρ2

2β .

Let f(v) = β
2 v

2 +L(a−v). On one hand, L̃(a) ≤ f(0) = L(a). On the other
hand, since L(a)− L(a− v) ≤ ρ |v| we have

f(v) =
β

2
v2 + L(a) + L(a− v)− L(a) ≥ β

2
v2 + L(a)− ρ |v| .

Therefore,

L̃(a) = inf
v
f(v) ≥ L(a) + inf

v

[
β

2
v2 − ρ v

]
= L(a)− ρ2

2β
.

This concludes our proof.

A.5 Proof of Theorem 3

We start with the following lemma which states that if the greedy algorithm
did not yet identified all the features of w̄ then a single greedy iteration
yields a substantial progress.

Lemma 7 Let F, F̄ be two subsets of [d] such that F̄ − F 6= ∅ and let

w = argmin
v:supp(v)=F

R(v) , w̄ = argmin
v:supp(v)=F̄

R(v) .

Assume that L is β-smooth and that

R(w̄)−R(w)− 〈∇R(w), w̄ −w〉 ≥ λ

2
‖w − w̄‖22 . (10)

Then,

R(w)−min
α
R(w + αej) ≥

(
R(w)−R(w̄) + λ

2‖w − w̄‖2
)2

2β
(∑

i∈F̄−F |w̄i|
)2 ,
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where j = argmaxi |∇R(w(k))i|.

Proof To simplify notation, denote F c = F̄ −F . For all j ∈ F c and η > 0,
we define

Qj(η) = R(w) + η sgn(w̄j) 〈∇R(w), ej〉+
η2 β

2
.

Next, using the assumption that L is smooth and Lemma 9 we obtain that

R(w + η sgn(w̄j) ej) ≤ Qj(η).

Since the choice of j = argmaxi |∇R(w(k))i| achieves the minimum of
minj minη Qj(η), the theorem is a direct consequence of the following
stronger statement:

R(w)−min
j
Qj(η) ≥

(
R(w)−R(w̄) + λ

2‖w − w̄‖2
)2

2β
(∑

i∈F̄−F |w̄i|
)2 , (11)

for an appropriate choice of η. Therefore, we now turn to prove that Equa-
tion (11) holds.

Denote s =
∑

j∈F c |w̄j |, we obtain that

s min
j
Qj(η) ≤

∑
j∈F c

|w̄j |Qj(η) (12)

≤ sR(w) + η
∑
j∈F c

w̄j (∇R(w))j + s
η2 β

2
.

Since we assume that w is optimal over F we get that (∇R(w))j = 0 for all
j ∈ F . Additionally, wj = 0 for j 6∈ F and w̄j = 0 for j 6∈ F̄ . Therefore,∑

j∈F c

w̄j (∇R(w))j =
∑
j∈F c

(w̄j − wj) (∇R(w))j

=
∑

j∈F̄∪F

(w̄j − wj) (∇R(w))j

= 〈∇R(w), w̄ −w〉 .

Combining the above with the assumption given in Equation (10) we obtain
that ∑

j∈F c

w̄j (∇R(w))j ≤ R(w̄)−R(w)− λ
2‖w − w̄‖22 .
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Combining the above with Equation (12) we get

s min
j
Qj(η) ≤ sR(w) + s

η2 β

2

− η
(
R(w)−R(w̄) +

λ

2
‖w − w̄‖2

)
.

Setting η =
(
R(w)−R(w̄) + λ

2‖w − w̄‖2
)
/(β s) and rearranging terms we

conclude our proof of (11).

Equipped with the above lemma we now turn to prove Theorem 3. Note
that the lemma assumes that R(w) is λ strongly convex on the relevant
support (Equation (10)). Since Theorem 3 does not make such an assump-
tion, we will apply the lemma with λ = 0 (this merely requires that R is
convex, which follows from our assumption that L is convex). The rest of
the conditions stated in Lemma 7 hold and therefore,

R(w(k))−R(w(k+1)) ≥
(
R(w(k))−R(w̄)

)2
2β

(∑
i∈F̄−F (k) |w̄i|

)2
≥
(
R(w(k))−R(w̄)

)2
2β ‖w̄‖21

.

Denote εk = R(w(k)) − R(w̄) and note that the above implies that εk+1 ≤
εk−

ε2k
2β ‖w̄‖21

. Our proof is concluded by combining the above inequality with
Lemma 10.

A.6 Proof of Theorem 4

Denote εk = R(w(k)) − R(w̄). The definition of the update implies that
R(w(k+1)) ≤ mini,α R(w(k) + α ei). The conditions of Lemma 7 holds and
therefore we obtain that (with F = F (k))

εk − εk+1 = R(wk)−R(w(k+1)) ≥
(
εk + λ

2‖w − w̄‖2
)2

2β
(∑

i∈F̄−F |w̄i|
)2

≥
4εk λ2‖w − w̄‖2

2β
(∑

i∈F̄−F |w̄i|
)2 ≥ εk

∑
i∈F̄−F |w̄i|2

β
λ

(∑
i∈F̄−F |w̄i|

)2
≥ εk

β
λ |F̄ − F |

≥ εk
β
λ ‖w̄‖0

.

(13)
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Therefore, εk+1 ≤ εk

(
1− λ

β ‖w̄‖0

)
. Applying this inequality recursively we

obtain εk+1 ≤ ε0

(
1− λ

β ‖w̄‖0

)k+1
. Therefore, if εk ≥ ε we must have ε ≤

ε0

(
1− λ

β ‖w̄‖0

)k
. Using the inequality 1 − x ≤ exp(−x) and rearranging

terms we conclude that k ≤ β ‖w̄‖0 log
(
ε0
ε

)
.

A.7 Proof of Theorem 5

We first prove the following lemma.

Lemma 8 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X ×Y. Suppose that the post-processing backward
procedure (Algorithm 4) is run for t iterations with input F (0) and denote
|F (0)| = k. Let λ > 0 be a scalar, w̄ ∈ Rd be a vector, such that

k + 1 ≥ ‖w̄‖0(1 + 4β2/λ2) ,

and assume that R is (k + 1 + ‖w̄‖0, λ)-sparsely-strongly convex. Then,

R(w(t)) ≤ R(w̄) + min
[
δt/α,∆0(1− α)t

]
,

where α = 2β
λ(k+1−‖w̄‖0) and ∆0 = max(0, R(w(0))−R(w̄)).

Proof We first analyze the effect of one replacement step. To simplify
notation, we use the shorthand w instead of w(t) and F instead of F (t). We
also denote F̄ = supp(w̄). Let F̃ = F̄ ∪ F , and let

w̃ = argmin
w:supp(w)⊆F̃

R(w).

Let k̄ = ‖w̄‖0. In a replacement step, we first perform a forward step. We
can therefore apply the analysis of the fully corrective forward selection, and
in particular, we obtain from Equation (13) with w̄ replaced by w̃ that

R(w)−R(w′) ≥ (R(w)−R(w̃))
β
λ |F̃ − F |

≥ (R(w)−R(w̃))
β
λ k̄

. (14)

Next, we remove the smallest element of w′, denoted w′q. Since w′ minimizes
the loss over F ′, and q ∈ F ′, we have that (∇R(w′))q = 0. Therefore, from
the β-smoothness of R we obtain

R(w′ − w′qeq)−R(w′) ≤ −w′q (∇R(w′))q + β
2 (w′q)

2 = β
2 (w′q)

2 .
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The definition of δt = R(w)−R(w′−w′qeq) yields that the left-hand side of
the above equals to R(w)−R(w′)− δt and therefore we obtain that

β
2 (w′q)

2 ≥ R(w)−R(w′)− δt . (15)

Combining the above with Equation (14) gives that

(w′q)
2 ≥ 2

β

(
(R(w)−R(w̃))

β
λ k̄

− δt

)
(16)

Next, we derive an upper bound on (w′q)
2. We have

(w′q)
2 ≤

∑
j∈F−F̄

(w′j)
2/|F − F̄ |

≤ ‖w′ − w̄‖22/(k + 1− k̄)

≤ 2[‖w′ − w̃‖22 + ‖w̄ − w̃‖22]/(k + 1− k̄)

≤ 4[R(w′) +R(w̄)− 2R(w̃)]
λ(k + 1− k̄)

.

Comparing the above upper bound with the lower bound given in Equa-
tion (16) we obtain

2
β

(
(R(w)−R(w̃))

β
λ k̄

− δt

)
≤ 4[R(w′) +R(w̄)− 2R(w̃)]

λ(k + 1− k̄)
.

To simplify notation denote s1 = λ
βk̄

and s2 = 2β
λ(k+1−k̄)

. Rearranging the
above inequality and using the definitions of s1 and s2 we obtain

δt ≥ s1 (R(w)−R(w̃))− s2

(
R(w′) +R(w̄)− 2R(w̃)

)
= s1 (R(w)−R(w̄) +R(w̄)−R(w̃))
− s2

(
R(w′)−R(w̄) + 2 (R(w̄)−R(w̃))

)
.

Next, using Equation (14) we know that R(w′) − R(w̄) ≤ R(w) − R(w̄) −
s1(R(w)−R(w̃)) ≤ (R(w)−R(w̄))(1− s1). Thus,

δt ≥(s1 − s2(1− s1)) (R(w)−R(w̄))
+ (s1 − 2 s2) (R(w̄)−R(w̃)) . (17)
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Now, using simple algebraic manipulations and the assumption k + 1 ≥
k̄(1 + 4β2/λ2) we obtain

s1 − 2 s2 =
λ2(k + 1− k̄)− 4β2k̄

βk̄λ(k + 1− k̄)

=
λ2(k + 1)− k̄(λ2 + 4β2)

βk̄λ(k + 1− k̄)
≥ 0 ,

and
s1 − s2(1− s1) = s1 − 2 s2 + s2 + s2 s1 ≥ s2 = α .

Combine this with Equation (17) we get δt/α ≥ R(w)−R(w̄). This proves
the first half of the desired bound. Moreover, if we let ∆t = R(w) − R(w̄)
at the beginning of the t-th iteration, then the inequality can be rewritten
as (∆t −∆t+1)/α ≥ ∆t. Therefore, ∆t+1 ≤ ∆t(1−α) ≤ ∆0(1−α)t+1. This
proves the second half of the desired bound.

We can now easily prove Theorem 5. We have two cases. First, if
the stopping condition is met then from the above lemma we obtain that
R(w(t))−R(w̄) ≤ δt/α = 0 ≤ ε. Second, if we perform t iterations without
breaking, then we get

ε ≤ ∆0(1− α)t ≤ ∆0e
−α t ≤ (R(0)−R(w̄))e−α t .

Rearranging the above and using the definition of α concludes our proof.

A.8 Proofs of Theorem 6 and Theorem 7

Fix some B1 > 2, l > 0, and ε < 0.1. To prove the theorems, we present
an input distribution D, then demonstrate a specific (dense) predictor with
‖w‖1 = B1 and mean error l, and finally present a lower bound on mean
error of any sparse predictor, from which we can conclude that any predictor
u with mean error at most ε must satisfy ‖u‖0 ≥ Ω(B2

1/(ε
α), with α = 1 for

squared-error and 2 for absolute-error.
The data distribution: Consider an instance space X = {+1,−1}d, and

a target space Y = {+1,−1}. The distribution D over X × Y is as follows.
First, the label Y is uniformly distributed with Pr[Y = 1] = 1

2 . Next, the
features X1, . . . , Xn are identically distributed and are independent condi-
tioned on Y , with Pr[Xi = y|Y = y] = 1+a

2 , where a will be specified later.
In such an example, the “information” about the label is spread among all

30



features, and in order to obtain a good predictor, this distributed informa-
tion needs to be pulled together, e.g. using a dense linear predictor.

A dense predictor: Consider the predictor w with wi = 1/(da) for all
features i. To simplify our notation, we use the shorthand E [〈w,x〉 | y] for
denoting E [〈w,x〉 | Y = y]. Verifying that for both values of y we have

E [〈w,x〉 | y] = d
1
da

a y = y

Var[〈w,x〉 | y] = 1−a2

d a2

(18)

we immediately obtain that

E[(〈w, X〉 − Y )2] =
1− a2

d a2
≤ 1
d a2

. (19)

Additionally, using Jensen’s inequality we obtain that:

E[|〈w, X〉 − Y |] ≤
√

E[(〈w,X〉 − Y )2] ≤
√

1
d a2

. (20)

We now choose a = 1/B1 and choose the dimension to be d = B2
1/l

α, where
α = 1 for the squared-error and α = 2 for the absolute error. This implies
that for both cases, ‖w‖1 ≤ B1 and R(w) ≤ l.

Sparse prediction: Consider any predictor u with only B0 non-zero coeffi-
cients. For such a predictor we have

∑
u2
i ≥ (

∑
ui)2/B0. Denote ρ =

∑
i ui.

Fix some y ∈ {±1} and denote µy = E[〈u, X〉|y]. We have,

E[〈u, X〉|y] = y a ρ and Var[〈u, X〉 | y] = (1− a2)‖u‖22 .

We start with the case of the squared-error.

E[(〈u, X〉 − y)2|y] = Var[〈u, X〉 | y] + (µy − y)2

= (1− a2)‖u‖22 + (1− aρ)2

≥ (1− a2)ρ2/B0 + (1− aρ)2 .

(21)

Thus,
E[(〈u, X〉 − Y )2] ≥ (1− a2)ρ2/B0 + (1− aρ)2 .

If |ρ| < B1/2 then the right-hand side of the above is at least 1/4. Otherwise,

E[(〈u, X〉 − Y )2] ≥ (1− a2)B2
1

4B0
=
B2

1 − 1
4B0

.
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Since we assume B1 ≥ 2 we have B2
1 − 1 ≥ B2

1/2 and we conclude that

E[(〈u, X〉 − Y )2] ≥ min
{

1
4
,
B2

1

8B0

}
.

Thus, if we want that R(w) will be at most ε we must have

B2
1

8B0
≤ ε ⇒ B0 ≥

B2
1

8 ε
,

which concludes the proof of Theorem 7.
Next, we consider the case of the absolute-error (Theorem 6). Since we

consider only B1 > 2, we have 0.05 < 0.25 ≤ Pr[Xi = Y |y] ≤ 0.75 < 0.95,
with the loss being an affine function (degree one polynomial) of X. We can
therefore use Lemma 11 to get that:

E [ |〈u, X〉 − Y | | y] ≥ 0.2
√

E [ (〈u, X〉 − Y )2 | y] .

Combining the above with Equation (21) we obtain that

E[|〈u, X〉 − Y |] ≥ 0.2
√

(1− a2)ρ2/B0 + (1− aρ)2 .

The rest of the proof follows analogously to the case of squared-error.

B Technical Lemmas

Lemma 9 Let L : R × Y → R be a convex β-smooth loss function and
let R(w) be as defined in Equation (1), where the expectation is w.r.t. an
arbitrary distribution over X × Y. Then, for any vectors w,u we have

R(w + u)−R(w)− 〈∇R(w),u〉 ≤ β

2
Ex[(〈u,x〉)2] ≤ β ‖u‖21

2
.

Proof Since L is β-smooth we have for any w,u and (x, y), L(〈w+u,x〉, y)−
L(〈w,x〉, y) − L′(〈w,x〉, y) 〈u,x〉 ≤ 1

2 β(〈u,x〉)2 . Taking expectation over
(x, y) and noting that ∇R(w) = E[L′(〈w,x〉, y) x] we get

R(w + u)−R(w)− 〈∇R(w),u〉 ≤ β

2
E[〈u,x〉2] .

This gives the first inequality in the lemma. For the second inequality
we use Holder inequality and the assumption ‖x‖∞ ≤ 1 to get that
E[〈u,x〉2] ≤ E[‖u‖21 ‖x‖2∞] ≤ ‖u‖21.
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Lemma 10 Let r > 0 and let ε0, ε1, ... be a sequence such that εt+1 ≤ εt−r ε2t
for all t. Let ε be a positive scalar and k be a positive integer such that
k ≥

⌈
1
r ε

⌉
, then, εk ≤ ε.

Proof We have
ε1 ≤ ε0 − rε20 ≤ 1/(4r),

where the maximum is achieved at ε0 = 1/(2r).
Next, we use an inductive argument to show that for t ≥ 1 we have

εt ≤
1

r(t+ 1)
, (22)

which will imply the desired bound in the lemma. Equation (22) clearly
holds for t = 1. Assume that it holds for some t ≥ 1. Then,

εt+1 ≤ εt − rε2t ≤ 1
r(t+1) −

1
r(t+1)2

, (23)

where we used the fact that the function x−rx2 is monotonically increasing
in [0, 1/(2r)] along with the inductive assumption. We can rewrite the right-
hand side of Equation (23) as

1
r(t+2)

(
(t+1)+1
t+1 · (t+1)−1

t+1

)
= 1

r(t+2)

(
(t+1)2−1

(t+1)2

)
.

The term (t+1)2−1
(t+1)2

is smaller than 1 and thus εt+1 ≤ 1
r(t+2) , which concludes

our inductive argument.

The following lemma generalizes the Khintchine inequality also to biased
random variables. We use the lemma in order to obtain lower bounds on
the mean-absolute error in terms of the bias and variance of the prediction.

Lemma 11 Let x = (x1, . . . , xd) be a sequence of independent Bernoulli
random variables with 0.05 ≤ Pr[xk = 1] ≤ 0.95. Let Q be an arbitrary
polynomial over d variables of degree r. Then,

E[ |Q(x)| ] ≥ (0.2)r E[ |Q(x)|2 ]
1
2 .

Proof
Using Holder’s inequality with p = 3/2 and q = 3 we have

E[ |Q(x)|2 ] =
∑

x∈{0,1}d
Pr(x)|Q(x)|2

=
∑

x

(
Pr(x)2/3|Q(x)|2/3

)(
Pr(x)1/3|Q(x)|4/3

)
≤ (

∑
x

Pr(x)|Q(x)|)2/3(
∑

x
Pr(x)|Q(x)|4)

1
3 .
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Taking both sides of the above to the power of 3/2 and rearranging, we
obtain that,

E[ |Q(x)| ] ≥ E[ |Q(x)|2 ]
1
2

(
E[ |Q(x)|2 ]

1
2 /E[ |Q(x)|4 ]

1
4

)2
. (24)

We now use Corollary (3.2) from Oleszkiewicz [2003] to get that

E[|Q(x)|2]
1
2 ≥ σ4,2(α)rE[|Q(x)|4]

1
4 ,

where

σ4,2(α) =

√
(1− α)2/4 − α2/4

(1− α)α2/4−1 − α(1− α)2/4−1
.

We conclude our proof by combining the above with Equation (24) and
noting that for α ∈ (.05, .5) we have σ4,2(α)2 ≥ 0.2.
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