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ABSTRACT

We describe and analyze a new algorithm for agnostically learning half-
spaces with respect to the margin error rate. Roughly speaking, this corre-
sponds to the worst-case error rate after each point is perturbed by a noise
vector of length at most µ. Margin based analysis is widely used in learning
theory and is considered the most successful theoretical explanation for the
statistical properties of several learning algorithms, such as Support Vector
Machines and AdaBoost. The proposed algorithm can learn n-dimensional
halfspaces in time poly(n exp( 1

µ log( 1
µε))), for any distribution, where µ is

the margin parameter and the error rate of the learned classifier is at most
ε plus the margin error rate of the optimal halfspace. This improves over
the bound poly(n exp(( 1

µ)2 log( 1
µε))), derived by Ben-David and Simon [7].

If the distribution over instances is uniform on the unit ball, we recover
the poly(n1/ε4) complexity bound of Kalai et al [17]. Furthermore, the de-
pendence on the dimension n in our complexity bound can be replaced by
the time required to calculate inner-products. This enables us to efficiently
learn halfspaces in possibly infinite dimensional Hilbert spaces by using the
so-called kernel trick.



1 Introduction

Some of the most important machine learning tools are based on learning
halfspaces, also known as linear classifiers. Examples include the Perceptron
[23], Support Vector Machines [27], and AdaBoost [15]. A linear classifier
hw, parameterized by a vector w, is a boolean function defined as h(x) =
1(〈w,x〉 > 0), where 〈w,x〉 is the inner product between w and the vector
instance x, and 1(predicate) is 1 if the predicate holds and 0 otherwise.
While the expressive power of linear classifiers seems to be rather restricted –
for example, it is impossible to express XOR functions using halfspaces – one
can use the so-called kernel trick to implicitly map the instances into a higher
dimension space and then learn a linear classifier in that space. Kernel-based
linear classifiers can handle not only non-linear decision boundaries but can
also be utilized for efficiently classifying non-vectorial instances such as trees
and strings (see for example [11]). The kernel trick has had tremendous
impact on machine learning theory and algorithms over the past decade.

In the agnostic PAC learning framework of [18], applied to binary clas-
sification, there is an unknown distribution D over X × {0, 1} (where X is
some domain), and the error rate of a classifier h : X → {0, 1} is defined as:

err(h) def= E[|h(x)− y|] , (1)

where expectation is with respect to D. Since both h(x) and y are in {0, 1}
we can rewrite err(h) as Pr[h(x) 6= y]. The current definition will allow us
later on to deal with more general classifiers such as randomized classifiers.
The learning algorithm is allowed to sample pairs (x, y) from D, and its goal
is to produce a near-optimal classifier ĥ with respect to a fixed concept class
H of classifiers:

err(ĥ) ≤ min
h∈H

err(h) + ε . (2)

When learning (origin-centered) halfspaces, the concept class equals {x 7→
1(〈w,x〉 > 0)}w:‖w‖=1. We note that ĥ does not necessarily belong to H.
Namely, we are concerned with improper learning, which is as useful as
proper learning for the purpose of deriving good classifiers. For agnostically
learning halfspaces when X = Rn, the best current result is the algorithm
of [17], with complexity poly(n) for any constant ε > 0. However, this
algorithm crucially assumes a restricted set of marginal distribution on X :
either uniform on the unit ball, uniform on {−1,+1}n, or log-concave. This
was further generalized by [8], who showed that similar bounds hold for
product distributions. Beside distributional assumptions, these works are
also characterized by explicit dependence on the dimension of X .
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It is well known that the VC dimension of halfspaces in an n-dimensional
space equals n. This implies that the number of training examples, as well
as the complexity of learning halfspaces, scales at least linearly with the
dimension n [27]. In fact, without imposing more assumptions, at least
n examples are necessary for learning an n-dimensional halfspaces with a
guarantee of the form given in Equation (2). Since kernel-based learning
algorithms allow X to be an infinite dimensional inner product space, the
performance requirement of the learned classifier must be changed. The
most common approach is to require that the learned classifier will be com-
petitive with the margin error rate of the optimal halfspace. Formally, the
µ-margin error rate of a halfspace of the form hw(x) = 1(〈w,x〉 > 0) is
defined as:

errµ(w) = Pr[hw(x) 6= y ∨ |〈w,x〉| ≤ µ] . (3)

Intuitively, errµ(w) is the error rate of hw had we µ-shifted each point in
the worst possible way. Based on the definition of errµ(w) we can restate
the goal of the learner as finding a classifier h that satisfies:

err(h) ≤ min
w:‖w‖=1

errµ(w) + ε . (4)

Bounds of the above form are called margin-based bounds and are widely
used in the statistical analysis of Support Vector Machines and AdaBoost. It
was shown [4, 22] that m = Θ(log(1/δ)/(µ ε)2) examples are sufficient (and
necessary) to learn a classifier for which Equation (4) holds with probability
of at least 1− δ. Note that m does not depend on the dimension. This fact
allows us to learn even in infinite dimensional spaces.

From a computational perspective, if minw errµ(w) = 0, then it is possi-
ble (e.g. using the kernel Perceptron of [14]) to learn a classifier that satisfies
Equation (4) in time poly(κ/(µε)), where κ is the time required to imple-
ment a single inner product. The reason we distinguish between κ and the
dimension is that when using kernels, the dimension is very large while κ
can still be a small number (for more details, see appendix A). The learning
problem becomes much more difficult when minw errµ(w) > 0. A computa-
tional complexity analysis under margin assumptions was first carried out
in [7] (see also the hierarchical worst-case analysis recently proposed in [6]).
The technique used in [7] is the observation that in the noise-free case, an
optimal halfpsace can be expressed as a linear sum of at most 1/µ2 exam-
ples. Therefore, one can perform an exhaustive search over all sub-sequences
of 1/µ2 examples, and choose the optimal halfspace. Combining this with
the margin-based sample complexity bound described previously, the total
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runtime complexity of the approach is poly(κ exp(( 1
µ)2 log( 1

µε))). Also, we
note that practical algorithms such as support vector machines [27] often
replace the 0-1 error function with a convex surrogate, and then apply con-
vex optimization tools. However, there are no guarantees on how well the
surrogate function approximates the 0-1 error function (there do exist some
recent results on the asymptotic relationship between these error functions
in some cases (cf. [5]), but these do not apply to the finite-sample setting we
are studying). In terms of negative results, we note that there exist strong
hardness of approximation results for proper learning without margin (see
for example [16, 13] and the references therein). There are also hardness
results for proper learning with sufficiently small margins [7]. We emphasize
that we allow improper learning, which is just as useful for the purpose of
learning good classifiers, and thus these hardness results do not apply.

We propose a new algorithm for learning linear classifiers, with or with-
out kernels, for arbitrary distributions. The main techniques for the deriva-
tion and analysis are:

• We approximate the 0-1 function 1(a > 0) with polynomials of pos-
sibly infinite degree. The idea of approximating this function with
a polynomial was first proposed by [17]. However, while [17] try to
approximate the function with a low-degree polynomial, we require
instead that the coefficients of the polynomials are bounded in a sense
that will be formally defined in Section 1.1. The principle that “the
size of the parameters is more important than their number” was one
of the main advantages in the analysis of the statistical properties of
several learning algorithms (e.g. [3]). Here, we use this principle for
obtaining an efficient algorithm.

• After applying the polynomial approximation, the learning problem
boils down to a convex optimization problem in an infinite-dimensional
space. Building on Wahba’s representer theorem [28], we show that
the problem can be solved efficiently using the kernel trick.

• To further improve the complexity of our algorithm, we show how
an approximate solution can be obtained after a single pass over the
examples. The idea is to apply an online learning algorithm together
with a technique called “online-to-batch” conversion.

• We show that our algorithm produces an approximate solution with
respect to all polynomial approximations of the 0-1 function that sat-
isfy a certain boundedness condition on their coefficients. The bound
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holds for the same algorithm, simultaneously for all polynomials. In-
tuitively, the algorithm learns both the halfspace, and (implicitly) the
optimal approximation polynomial for the data at the same time.

• To derive explicit quantitative bounds, we describe and analyze specific
polynomial approximations, focusing on the technique of Chebyshev
polynomial approximation on top of a sigmoid function. The coef-
ficients of this polynomial approximation can be bounded explicitly
using tools from complex analysis. In particular, we rely on the fact
that the sigmoid is a meromorphic function over the complex field.
With these polynomials, we prove that our algorithm can learn a clas-
sifier which satisfies Equation (4) in time poly(κ exp( 1

µ log( 1
µε)). This

improves over the poly(κ exp(( 1
µ)2 log( 1

µε))) bound, which is implied
by the work of [7].

• The latter bound holds for any distribution and is dimension free up
to computing inner products, which with kernels can be computed
efficiently even in infinite-dimensional spaces. However, the generality
of our algorithm allows us to use it seamlessly in the plain vanilla
setting of learning halfspaces in Rn without kernels. In this case, we
can recover the poly(n1/ε4) complexity bound of [17], with the same
assumption of uniform distribution over the unit ball. Interestingly,
the very same algorithm works both under the margin-based analysis
or the uniform distribution assumption.

1.1 Main Results

Let X be a compact subset of a reproducing kernel Hilbert space (or RKHS),
which w.l.o.g. will be taken to be the unit ball around the origin. For
simplicity, one can think of X as simply the unit ball in Rn. For kernel-based
classifiers, however, we will need the more general notion of an RKHS, which
is a certain complete inner product space (see appendix A for more details).
Let κ be the time required to perform an inner product 〈x,x′〉 between pairs
of elements in X . In general, when X is an n-dimensional space, we have
κ = n. However, when using kernels, κ can be a small constant independent
from the dimension of X .

To derive and analyze our results, we accommodate classifiers with real-
valued output, as well as randomized classifiers. Randomized classifiers can
be defined as mappings of the form h : X → [0, 1], where the predicted label
for an instance x is chosen to be 1 with probability h(x), and 0 otherwise.
In that case, the definition of err(h) given in Equation (1) can be rewritten
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as err(h) = Pr(x,y)∼D,ŷ∼h(x)[ŷ 6= y]. We will also use the definition of err(·)
given in Equation (1) for functions with arbitrary real-valued output, which
will be discussed later on.

The concept classes we deal with below will be of the form

Hφ = {x 7→ φ(〈w,x〉)}w:‖w‖≤1,

where φ : R → R is denoted as the transfer function. For φ0−1(a) def=
1(a > 0), Hφ0−1 is simply the class of halfspaces1. However, we will also
investigate smoother transfer functions which approximate the 0-1 transfer
function. The resulting concept classes, which can be thought of as “fuzzy”
halfspaces, will allow us to derive learning guarantees for margin errors,
but might also be of independent interest as a natural generalization of the
concept class of halfspaces.

Our main theorem is the following:

Theorem 1 Let D be an arbitrary distribution over X ×{0, 1}. For B > 0,
let

PB =

p(a) =
∞∑
j=0

βj a
j :

∞∑
j=0

β2
j 2j ≤ B


be the set of all polynomials (possibly of infinite degree) with an `2-bound on
the growth of their coefficients. For any ε > 0, δ > 0, let

m = Ω
(
B log(1/δ)

ε2

)
.

Then, the algorithm described in Section 2 agnostically learns HB
def=⋃

p∈PB
Hp in time O(κm2). Namely, with probability at least 1 − δ, the

classifier f̃ : X → [0, 1] returned by the algorithm satisfies

err(f̃) ≤ min
h∈HB

err(h) + ε.

1For simplicity, we are concerned only with origin-centered halfspaces, namely we do not
allow an additional bias term. It is easy to extend our results to learning general halfspaces
using the following standard trick: for any given example, add a constant coordinate of 1
to each x. Any general halfspace in X , defined as sgn〈w,x〉 + b now corresponds to the
origin-centered halfspace sgn〈[w, b], [x, 1]〉. The only change is that the norm bounds on
x and w are now somewhat different, but this can be dealt with by making some trivial
changes to the analysis.
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We note that the 2-factor in the definition of PB is rather arbitrary, and
can be replaced with ν−j for an arbitrary ν ∈ (0, 1). The price we pay is an
additional 1/(1 − ν) factor in the bound for m in the theorem. For clarity
of representation, we chose the value of ν = 0.5.

A perhaps surprising property of our analysis is that we propose a single
algorithm, returning a single classifier, which is simultaneously competitive
against all transfer functions p ∈ PB. In particular, it learns with respect to
the “optimal” transfer function, where by optimal we mean the one which
attains the smallest error rate E[|p(〈w,x〉) − y|]. Naturally, the optimal
transfer function depends on the distribution D, which is unknown to us. In
the rest of this section, we derive more explicit complexity results for learning
concept classes defined by φ0−1 or smooth approximations of it. This allows
us to derive complexity results for learning with respect to margin error
(Equation (4)). It is important to note that while for the sake of the analysis
we must specify explicitly some transfer functions, the algorithm itself is not
affected by this specification.

Our first explicit bound involves the 0-1 transfer function. While the 0-1
transfer function cannot be expressed as a polynomial in PB for any finite
B, it can be approximated by a polynomial in PB. In particular, the follow-
ing lemma shows that by imposing a (rather strong) uniform distribution
assumption on the marginal distribution over X , one can approximate the
0-1 transfer function by a polynomial. This technique was first proposed by
[17] for the very same purpose. In fact, we use exactly the same Hermite
polynomials construction as in [17]. However, while [17] shows that the 0-
1 transfer function can be approximated by a low degree polynomial, we
are concerned with polynomials having bounded coefficients. By showing
that the approximating polynomial has bounded coefficients, we are able
to re-derive the results in [17] for a uniform distribution with a different
algorithm.

Lemma 1 Let D be a distribution over X × {0, 1}, where X is the unit
ball in Rn and the marginal distribution of D on X is uniform. For any
ε ∈ (0, 1), if B = poly(n1/ε4), then there exists p ∈ PB such that

E[|p(〈w,x〉)− y|] ≤ E[|φ0−1(〈w,x〉)− y|] + ε .

As a direct corollary, using Theorem 1, we obtain the following:

Corollary 1 Assume that the conditions of Theorem 1 and Lemma 1 hold.
For any ε > 0, δ > 0, let m = poly

(
n1/ε4 log

(
1
δ

))
. Then the algorithm

described in Section 2 agnostically learns Hφ0−1 in time O(κm2).
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As mentioned before, a similar bound has been obtained by [17] and the
above merely shows that our algorithm is not weaker than the one described
in [17]. Moreover, this bound makes restrictive distributional assumptions.
We note that [17, 8] further relaxed the distributional assumptions, but our
focus in this paper is different and therefore we made no attempt to recover
all of their results.

-1 1

1

Figure 1: Illustrations of the transfer func-
tions used in the paper: the 0-1 transfer func-
tion (dashed blue line); the erf transfer func-
tion (red line, for σ = 0.1); and the sig-
moid transfer function (dotted black line, for
σ = 0.1).

To derive distribution-free re-
sults, we will use bounds which are
not with respect to the 0-1 trans-
fer function, but rather with re-
spect to smoother transfer func-
tions. A simple preliminary ex-
ample is the Gaussian cumulative
distribution function with variance
σ2/2, defined as

φerf(a) def=
1
2

+
1
2

erf
(x
σ

)
=

1
2

+
1√
π

∫ x/σ

0
e−t

2
dt .

(5)
The variance parameter σ controls
the steepness of the transfer func-
tion. As σ decreases, the erf transfer
function resembles more and more
the 0-1 transfer function. An illus-
tration of φerf is given in Figure 1.
This function equals its Taylor se-
ries expansion at any point, which is an infinite-degree polynomial with
bounded coefficients, hence can be analyzed using Theorem 1. However, the
derived complexity results, in terms of ε and the margin parameter µ, are
not superior to those in [7], and are hence relegated to appendix B.

To get better results, we will use a different transfer function and ap-
proximating polynomial. The transfer function will be the sigmoid function,
defined as

φsig(x) =
1

1 + e−x/σ
. (6)

As in the φerf case, σ controls the steepness of the curve, which resembles the
0-1 transfer function more and more as σ → 0 (see Figure 1). The following
lemma shows how the sigmoid transfer function can be approximated by a
polynomial. The proof is based on a Chebyshev approximation technique.
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Lemma 2 Let φsig be as defined in Equation (6), where for simplicity we
assume σ ≤ 1/4. For any ε > 0, let

B = 10 +
1

12σ4
+

3
2

exp
(

4 log1+πσ

(
2σ + 1/π
πσε

))
.

Then there exists p ∈ PB such that

E[|p(〈w,x〉)− y|] ≤ E[|φsig(〈w,x〉)− y|] + ε.

By Theorem 1, it follows that:

Corollary 2 Let D be an arbitrary distribution over X × {0, 1}. Let σ > 0
be a variance parameter and let φsig be as defined in Equation (6). Denote
B as in Lemma 2, and let

m = Ω
(
B log(1/δ)

ε2

)
.

Then the algorithm described in Section 2 agnostically learns Hφsig
in time

O(κm2).

Finally, we use this corollary to derive a margin error guarantee:

Theorem 2 Let D be an arbitrary distribution over X × {0, 1}, and let µ
be a margin parameter. Let ε > 0, δ > 0 such that µ/ log(1/ε) ≤ 1/4, and
set

B = 10+ log4(1/ε)
12µ4 +

3
2

exp
((

2.1 log(1/ε)
µ

)(
log
(

1
µ

)
+ log

(
1
πε

)
+ log log

(
1
ε

)))
,

m = Ω
(
B log(1/δ)

ε2

)
.

Then, the algorithm described in Section 2 runs in time O(κm2), and re-
turns a classifier f̃ : X → [0, 1] such that with probability at least 1 − δ,
err(f̃) ≤ minw:‖w‖≤1 errµ(w) + ε .

2 The Algorithm

Our algorithm is based on implicitly solving a convex optimization prob-
lem in an infinite dimensional space. We first present the explicit infinite-
dimensional optimization problem, and then show it can be solved efficiently,
with a pseudo-code provided.
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To simplify the presentation, we derive the algorithm without the use of
kernels, therefore X is simply the unit ball in Rn. In Appendix A we show
how the results can be extended to kernel-based classifiers. Consider the
mapping ψ : X → RN defined as follows: for any x ∈ X , we let ψ(x) be
an infinite vector, indexed by k1 . . . , kj for all (k1, . . . , kj) ∈ {1, . . . , n}j and
j = 0 . . .∞, where the entry at index k1 . . . , kj equals

2−j/2xk1 · xk2 · · ·xkj
.

Note that although the vector is infinite, inner products between such vectors
can actually be computed efficiently, since for any x,x′ ∈ X ,

〈ψ(x), ψ(x′)〉 =
∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jxk1x
′
k1 · · ·xkj

x′kj

∞∑
j=0

2−j(〈x,x′〉)j

=
2

2− 〈x,x′〉
.

Let K(x,x′) = 2/(2−〈x,x′〉) denote the function which performs this inner
product. The fact that we can efficiently perform inner products in infinite-
dimensional spaces is known as the kernel trick in machine learning, and the
function K(·, ·) is known as the kernel function (for more details, see again
appendix A).

Given a training set (x1, y1), . . . , (xm, ym), our algorithm solves the fol-
lowing convex optimization problem:

min
v:‖v‖2≤B

1
m

m∑
i=1

|〈v, ψ(xi)〉 − yi| , (7)

and the predictor is defined to be

f̃(x) = min{1,max{0, 〈ṽ, ψ(x)〉}} , (8)

where ṽ is a solution of Equation (7). Of course, this cannot be performed
explicitly, since these objects are infinite-dimensional. Below, we explain
how we can efficiently implement this algorithm.

Since the objective function and the predictor are defined only via inner
products with ψ(xi), and the constraint on v is defined by the `2-norm, it
follows by the Representer theorem [28] that there is an optimal ṽ in the
span of ψ(x1), . . . , ψ(xm) (see appendix A). Therefore, instead of learning
a vector v, we can learn a set of weights α1, . . . , αm based on the training
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set. Once these are founds, we can rewrite the definition of the predictor in
Equation (8) as

f̃(x) = min{1,max{0, 〈
m∑
i=1

αiψ(xi), ψ(x)〉}}

= min{1,max{0,
m∑
i=1

αiK(xi,x)}} .

The r.h.s. can of course be computed efficiently.
As to the learning phase (namely, solving the optimization problem in

Equation (7)), it can be rewritten in terms of the variables α1, . . . , αm. The
resulting optimization problem is convex with respect to the α’s, and there-
fore can be solved by standard convex optimization tools such as the ellipsoid
method or interior point methods. To further improve the complexity bound
and to simplify the derivation of the generalization bound, we instead choose
to use a simple stochastic gradient descent technique. This technique, well
known in machine learning theory, can be seen as a variant of the percep-
tron algorithm. At time t, we update our current classifier v, with respect
to the gradient contributed by example (xt, yt), scaled by a learning rate
η =

√
B/T :

v = v − η sgn(〈v, ψ(xt)〉 − yt)ψ(xi),

where sgn(·) is the sign function. If ‖v‖2 > B, we shrink the classifier back to
the feasible region: v = v

√
B/‖v‖. To obtain the final classifier, we average

over the ensemble of m classifiers obtained at every time step. This allows us
to obtain a generalization guarantee with respect to the unknown underlying
distribution. Since all the operations are only in terms of weights and inner
products between elements in the mapped training data, we can use the
kernel function K(·, ·) to implicitly perform these infinite-dimensional inner
products. An optimized pseudo-code is provided in Figure 1.

It is easily verified that the algorithm runs in time O(κm2). Its general-
ization guarantee, stated in the theorem below, is standard in the statistical
machine learning literature (see [29, 10] for details).

Theorem 3 Algorithm 1 presented below runs in time O(κm2), and results
in a classifier f̃ : X → [0, 1] such that with probability at least 1− δ,

err(f̃) ≤ min
v:‖v‖2≤B

E[|〈v, ψ(x)〉 − y|] +O

(√
B log(1/δ)

m

)
.
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Algorithm 1 Approximated Half-Space Learning Algorithm
Input: (x1, y1), . . . , (xm, ym) ; B ; K(x,x′) = 2/(2− 〈x,x′〉)
Initialize: η =

√
m/B, a = 0, αj = 0, ᾱj = 0 for all j = 1, . . . ,m

For i = 1, 2, . . . ,m
b =

∑i−1
j=1 αjK(xj ,xi) // Prediction of current classifier on xi

αi = −η sgn(b− yi)
a = a+ 2b−K(xi,xi)α2

i // Update classifier norm
If a > B

For j = 1, . . . , i
αj = αj

√
B/a

a = B
For j = 1, . . . , i

ᾱj = ᾱj + αj/m // Track average of all classifiers so far
Output: predictor f̃(x) = min{1,max{0,

∑m
i=1 ᾱiK(xi,x)}}

3 Proofs

Due to lack of space, some of the proofs are deferred to Appendix C.

3.1 Proof of Theorem 1

For simplicity, we will assume that X is a finite-dimensional space, with di-
mension n. The proof extends with minimal changes to infinite-dimensional
spaces, which are relevant when we learn with kernels (see appendix A for
more details). We equip the range of ψ(·) with the standard `2 norm. The
key component in the proof is to show that the mapping ψ(·) does not blow
up norms too much.

Lemma 3 For all x ∈ X it holds that ‖ψ(x)‖2 ≤ 2. Also, for any w such
that ‖w‖2 ≤ 1, and any polynomial p(a) =

∑∞
j=0 βja

j in PB, if we let vw

be an element in RN explicitly defined as being equal to βj2j/2wk1 · · ·wkj
at

index k1, . . . , kj (for all k1, . . . , kj ∈ {1, . . . , n}j , j = 0 . . .∞) then ‖vw‖2 ≤
B.
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Proof The fact that for all x ∈ X we have ‖x‖2 ≤ 1 yields:

‖ψ(x)‖2 =
∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jx2
k1 · · ·x

2
kj

=
∞∑
j=0

2−j(〈x,x〉)j

≤
∞∑
j=0

2−j = 2 .

To show the second part of the lemma, we have

‖vw‖2 =
∞∑
j=0

∑
k1,...,kj

β2
j 2jw2

k1 · · ·w
2
kj

=
∞∑
j=0

β2
j 2j
∑
k1

w2
k1

∑
k2

w2
k2 · · ·

∑
kj

w2
kj

=
∞∑
j=0

β2
j 2j
(
‖w‖2

)j ≤ B.

Let p(a) =
∑∞

j=0 βja
j be an arbitrary polynomial in PB. Let w∗ =

arg minw:‖w‖≤1 E[|p(〈w,x〉) − y|] be the optimal linear classifier with re-
spect to p(·) and let vw∗ be its corresponding element in RN (defined as
in Lemma 3). Let f̃ be the output classifier of the algorithm. Combining
Lemma 3 with Theorem 3, we have that with probability at least 1− δ,

err(f̃) ≤ E[|〈vw∗ , ψ(x)〉 − y|] +O

(√
B log(1/δ)

m

)
. (9)

However, by definition of ψ and vw∗ , we have that

〈vw∗ , ψ(x)〉 =
∞∑
j=0

∑
k1,...,kj

2−j/2βj2j/2w∗k1 · · ·w
∗
kj
xk1 · · · ·xkj

=
∞∑
j=0

βj(〈w∗,x〉)j

= p(〈w∗,x〉) .

Plugging this into Equation (9), and using the optimality of w∗, the theorem
follows.

3.2 Proof of Theorem 3

Let α(t)
1 , . . . , α

(t)
m be the value of the α′s at the beginning of round t of the

algorithm, and let vt =
∑

i α
(t)
i ψ(xi). The algorithm can be rewritten as
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v1 = 0 and for t > 1,

gt(v) = |〈v, ψ(xt)〉−yt| , v̂t+1 = vt−η∇gt(vt) and vt+1 = min
v:‖v‖2≤B

‖v−v̂t+1‖ ,

where ∇gt(vt) is a (sub)-gradient of the function gt at vt. This algorithm
corresponds to the online convex optimization algorithm of [29, Section 2.2],
and combining [29, Theorem 2] with the fact that ‖∇gt(vt)‖2 ≤ ‖ψ(xt)‖2 ≤
2 (see Lemma 3), it is easy to see that for any v? with ‖v?‖ ≤

√
B we have:

1
m

m∑
t=1

gt(vt) ≤
1
m

m∑
t=1

gt(v?) +O(
√
B/m) .

Next, using the ’averaging’ online-to-batch technique (see details in [10,
Corollary 2], where the basic idea is to combine Azuma concentration in-
equality together with Jensen’s inequality) we get that with probability of
at least 1− δ over the choice of the training examples we have

E[|〈v̄, ψ(x)〉 − y|] ≤ E[|〈v?, ψ(x)〉 − y|] +O(
√
B log(1/δ)/m) ,

where v̄ = 1
m

∑m
i=1 vi. Finally, our proof is concluded by noting that for

any y ∈ {0, 1} we have

|min{1,max{0, 〈v̄, ψ(x)〉}} − y| ≤ |〈v̄, ψ(x)〉 − y| .

3.3 Proof sketch of Lemma 2 and Theorem 2

For a full proof, see appendix C. We approximate the sigmoid transfer
function φsig using the technique of Chebyshev polynomial approximation.
Chebyshev polynomials {Tn(·)}∞n=0 form an orthogonal basis for the space
of continuous functions on [−1,+1]. In particular, φsig equals an infinite ex-
pansion

∑∞
n=0 αnTn(·), where αn =

∫ 1
−1 φsig(x)Tn(x)/

√
1− x2dx. We trun-

cate this into a finite polynomial
∑N

n=0 αnTn(·) (where N is picked so as to
optimize the bound), and estimate its coefficients to get the bound on B in
Lemma 2. The major technical difficulty is estimating αn for all n, since
their defining integrals do not have a closed-form expression as a function of
n and σ. For that, we turn to tools from complex analysis, utilizing the fact
that φsig is a meromorphic function over the complex field (roughly speak-
ing, it is sufficiently ’well behaved’). Theorem 2 is derived by determining
and plugging in the largest σ so that φsig is ε-close to φ0−1 for any instance
with margin larger than µ.
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4 Discussion

We described and analyzed a new technique for agnostically learning halfs-
paces. Our algorithm recovers the result of [17] under uniform distribution
assumption and improves the result of [7] for margin-based analysis. We
also showed that our algorithm can agnostically learn concept classes of the
form {x 7→ φ(〈w,x〉)} for several smooth transfer functions, which can be
thought of as “fuzzy” hyperplanes.

The immediate open question is whether the margin-based complexity
bound can be further improved. To the best of our knowledge, all previous
hardness results are for proper learning, where the returned classifier must be
a halfspace. The focus of this paper is on improper learning, which is just as
useful for the purpose of learning good classifiers. The achievable complexity
bound for improper learning of halfspaces is therefore an important open
problem. Another possible direction is to consider other types of margin-
based analysis or transfer functions. For example, in the statistical learning
literature, there are several definitions of “noise” conditions, some of them
are related to margin, which lead to faster decrease of the error rate as a
function of the number of examples (see for example [9, 26, 25]). Studying
the computational complexity of learning under these conditions is left to
future work. Finally, it would be interesting to further understand whether
our results have implications to learning Boolean functions, for example by
using Boolean kernels [19].
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A Learning with Kernels

Kernelized linear classifiers is a powerful extension of linear classifiers on
Rn, and an integral part of modern machine learning. Our algorithm can
be easily combined with kernels, and the analysis of our algorithm (even
for linear classifiers on Rn) use ideas derived from kernel theory. In this
appendix, we shortly explain the concept of kernelized linear classifiers; de-
scribe the main results needed for the analysis; and show how to combine
our algorithm with kernels. For additional details and results, we refer the
reader to [11, 24].

With standard linear classifiers, the prediction on an instance x ∈ Rn

using a classifier hw parameterized by w ∈ Rn is based on the inner product
〈x,w〉. Kernel linear classifiers predict by first mapping the instance x into
an element ψ(x) in some Hilbert space (namely, a complete inner-product
space), and then predicting by computing the inner product 〈w, ψ(x)〉,
where w is now an element in the Hilbert space. The power of these meth-
ods stem from the fact that these Hilbert spaces can be very high or even
infinite dimensional. So while the classifier is always linear on the mapped
instances in the Hilbert space, it can have a highly non-linear behavior on
the original space from which instances were sampled. This phenomenon al-
lows us to learn data which is not linearly separable. Moreover, the domain
of ψ(·) need not even be Rn, and it is possible to learn linear classifiers over
non-vectorial objects such as strings and trees. This has had tremendous
impact on machine learning theory and algorithms over the past decade.

On a first look, the obvious computational disadvantage of this approach
is that an explicit evaluation of 〈w, ψ(x)〉 might be hard or even impossible
to perform. Luckily, for a special class of Hilbert spaces called reproducing
kernel Hilbert spaces (or RKHS for short), for any two vectors x1,x2 ∈ Rn,
the inner product of their mapping 〈ψ(x1), ψ(x2)〉 is equal to k(x1,x2),
where the reproducing kernel k(·, ·) is usually an explicit and easily com-
putable function. In the trivial case of linear kernels, where ψ(·) is simply
the identity transformation, we have that k(x1,x2) = 〈x1,x2〉. However,
many other functions are possible. For example, there exist an infinite di-
mensional RKHS whose kernel (called an RBF kernel in the literature) is
defined as k(x1,x2) = exp(−‖x1 − x2‖2/σ2) for an arbitrary σ2 > 0.

Moreover, it is possible to prove that for many learning-related optimiza-
tion problems (which include our formulation as a special case), there is an
optimal classifier w∗ in the RKHS which lies in the span of the mapped
data points ψ(x1), . . . , ψ(xm). This classic result is known as Wahba’s rep-
resenter theorem in the literature [28], and basically holds whenever shift-
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ing w in a direction orthogonal to all data points cannot improve the ob-
jective function. Thus, when we attempt to find the optimal classifier,
it is enough to determine the coefficients α1, . . . , αm in the expansion of
w∗ = α1ψ(x1) + . . . + αmψ(xm). Once these coefficients are determined,
prediction is easy: for any new instance x, we predict according to

〈w, ψ(x)〉 =
m∑
i=1

αi〈ψ(xi), ψ(x)〉 =
m∑
i=1

αik(xi,x).

Thus, we can implicitly perform the inner product in a possibly infinite-
dimensional Hilbert space (the term on the left), by doing a simple calcula-
tion involving a kernel function (the term on the right).

A useful feature of reproducing kernels is that they are closed to com-
position, multiplication and addition (including infinite summation under
appropriate conditions). As a result, the function

K(x1,x2) =
∞∑
j=0

(〈x1,x2〉)j =
2

2− 〈x1,x2〉

we have defined for our algorithm is in fact a reproducing kernel for some
RKHS, since it is an infinite positive polynomial of the linear kernel 〈x1,x2〉.

Moreover, the fact that kernels can be composed allows us to seamlessly
combine our algorithm with kernels. All we need to change in the pseudo-
code described in Section 2 is to redefine K(·, ·) as 2/(2 − k(x, x′)), where
k(·, ·) is any reproducing kernel we wish. As a result, we can agnostically
learn halfspaces in the (possibly) infinite-dimensional RKHS associated with
k(·, ·), and thus learn non-linear classifiers which are near-optimal, with
respect to the set of non-linear classifiers induced by halfspaces in the RKHS.

In terms of the analysis, for the proof of Theorem 1, we assumed that
each instance x can be written as a vector (x1, . . . , xn). However, our anal-
ysis does not depend on the dimension and we do not need to assume that n
is finite. Therefore, the analysis holds for infinite-dimensional Hilbert spaces
as well. The only technicality is that in order to represent x as a (possi-
bly infinite) vector, we need to show that our RKHS has a countable basis.
This can be shown to hold with the mild requirement that the kernel k(·, ·)
is continuous and bounded in the support of the data distribution (see [1]).

B The φerf(·) function

As discussed in the body of the paper, φerf(·) is a smooth transfer function
which is relatively straightforward to analyze, although the resulting com-
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plexity bounds do not improve on the current results in the literature. In
this appendix, we formally carry out the relevant analysis.

First, the following lemma tells us that φerf(·) is in fact an infinite degree
polynomial in PB, but with coefficients which decay sufficiently rapidly to
give a meaningful bound on B.

Lemma 4 Let φerf(·) be as defined in Equation (5), and

B =
1
4

+
4
πσ2

(
1 +
√

2e
σ2

e4/σ
2

)
.

Then φerf(·) ∈ PB.

Proof By a standard fact, φerf(·) is equal to its infinite Taylor series ex-
pansion at any point, and this series equals

φerf(x) =
1
2

+
1√
π

∞∑
n=0

(−1)nx2n+1

σ2n+1n!(2n+ 1)
.

Luckily, this is an (infinite degree) polynomial, and it is only left to calculate
for which values of B does it belong to PB. Plugging in the coefficients in
the bound on B, we get that

B ≤ 1
4

+
1
π

∞∑
n=0

2(2n+1)

σ2(2n+1)(n!)2(2n+ 1)2
≤ 1

4
+

1
π

∞∑
n=0

(σ2/2)−(2n+1)

(n!)2

=
1
4

+
1

πσ2/2

(
1 +

∞∑
n=1

(σ2/2)−2n

(n!)2

)
≤ 1

4
+

1
πσ2/2

(
1 +

∞∑
n=1

(σ2/2)−2n

(n/e)2n

)

=
1
4

+
1

πσ2/2

(
1 +

∞∑
n=1

(
2e
σ2n

)2n
)
.

Thinking of (2e/σ2n)2n as a continuous function of n, a simple derivative ex-
ercise shows that it is maximized for n = 2/σ2, with value e4/σ

2
. Therefore,

we can upper bound the series in the expression above as follows:

∞∑
n=1

(
2e
σ2n

)2n

=
b
√

22e/σ2c∑
n=1

(
2e
σ2n

)2n

+
∞∑

n=d
√

22e/σ2e

(
2e
σ2n

)2n

≤
√

22e
σ2

e4/σ
2

+
∞∑

n=d
√

22e/σ2e

(
1
2

)n
≤
√

22e
σ2

e4/σ
2

+ 1.
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From which we get

B ≤ 1
4

+
4
πσ2

(
1 +
√

2e
σ2

e4/σ
2

)
.

By Theorem 1, it follows that:

Corollary 3 Let D be an arbitrary distribution over X × {0, 1}. Let σ > 0
be a variance parameter and let φerf be as defined in Equation (5). Denote
B as in Lemma 4, and let

m = Ω
(
B log(1/δ)

ε2

)
.

Then the algorithm described in Section 2 agnostically learns Hφerf
in time

O(κm2).

The next lemma connects the error with respect to φerf(·) and the margin
error as defined in Equation (3).

Lemma 5 For any µ > 0 and ε > 0, let σ = µ/
√

log(1/2ε) and let φerf be
the corresponding erf transfer function. Then,

E[|φerf(〈w,x〉)− y|] ≤ errµ(w) + ε .

Proof To satisfy the inequality in the lemma, it suffices to choose a value
of σ so that for any a ∈ [−1, 1] such that |a| ≥ µ, it holds that |φerf(a) −
φ0−1(a)| ≤ ε. This happens if σ2 fulfills the inequality

1− 2ε ≤ erf
(µ
σ

)
.

Using a standard inequality for the error function (see [2]), this will follow
if we require that

ε ≥ e(−µ/σ)2

√
π

(
µ
σ +

√(
µ2

σ2

)2
+ 4

π

) .
A stronger requirement is that ε ≥ e−(µ/σ)2/2, which leads to

σ ≤ µ√
log(1/2ε)

.
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Combining the above lemma with Corollary 3 we obtain:

Theorem 4 Let D be an arbitrary distribution over X × {0, 1}, and let µ
be a margin parameter. Let ε > 0, δ > 0, and set

B =
1
4

+
4 log(1/2ε)

πµ2

(
1 +
√

2e log(1/2ε)
µ2

exp
(

4 log(1/2ε)
µ2

))
,

m = Ω
(
B log(1/δ)

ε2

)
Then, the algorithm described in Section 2 returns a hypothesis h such that
with probability at least 1− δ, err(h) ≤ minw:‖w‖≤1 errµ(w) + ε .

C Additional Proofs

C.1 Proof of Lemma 1

Our proof technique is closely related to the one in [17]. In particular, we
use the same kind of approximating polynomials (based on Hermite poly-
nomials). The main difference is that while in [17] the degree of the ap-
proximating polynomial was the dominating factor, for our algorithm the
dominating factor is the size of the coefficients in the polynomial. We note
that we have made no special attempt to optimize the proof or the choice of
polynomials to our algorithm, and it is likely that the result below can be
substantially improved. To maintain uniformity with the rest of the paper,
we will assume that the half-space with which we compete passes through
the origin, although the analysis below can be easily extended when we relax
this assumption.

For the proof, we will need two auxiliary lemmas. The first one provides
a polynomial approximation to φ0−1, which is an L2 approximation to φ0−1

under a Gaussian-like weighting, using Hermite Polynomials. The second
lemma shows how to transform this L2 approximating polynomial into a
new L1 approximating polynomial.

Lemma 6 For any d > 0, there is a degree-d univariate polynomial pd(x) =∑d
j=0 βjx

j such that∫ ∞
−∞

(pd(x)− sgn(x))2
exp(−x2)√

π
dx = O

(
1√
d

)
. (10)
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Moreover, it holds that |βj | ≤ O(2(j+d)/2).

Proof Our proof closely follows that of theorem 6 in [17]. In that theorem,
a certain polynomial is constructed, and it is proven there that it satisfies
Equation (10). Thus, to prove the lemma it is enough to show the bound
on the coefficients of that polynomial. The polynomial is defined there as

pd(x) =
d∑
i=0

ciH̄i(x),

where H̄i(x) = Hi(x)/
√

2ii!, Hi(x) is the i-th Hermite polynomial, and

ci =
∫ ∞
−∞

sgn(x)H̄i(x)
exp(−x2)√

π
dx .

In the proof of theorem 6 in [17], it is shown that |ci| ≤ Ci−3/4, where C > 0
is an absolute constant. Letting βj be the coefficient of xj in pd(x), and hn,j
be the coefficient of xj in Hn(x), we have

|βj | =

∣∣∣∣∣∣
d∑

n=j

cn
hn,j√
2nn!

∣∣∣∣∣∣ ≤ C
d∑

n=j

|hn,j |√
2nn!

. (11)

Now, using a standard formula for hn,j (cf. [20]),

|hn,j | = 2j
n!

j!
(
n−j

2

)
!

whenever n = j mod 2, otherwise hn,j = 0. Therefore, we have that for
any n, j,

|hn,j |√
2nn!

≤ 2j−n/2
√√√√ n!

(j!)2
((

n−j
2

)
!
)2 . (12)

Now, we claim that (((n − j)/2)!)2 ≥ (n − j)!2j−n. This follows from
(((n− j)/2)!)2 being equal to

n−j
2
−1∏

i=0

(
n− j − 2i

2

)(
n− j − 2i

2

)
≥

n−j
2
−1∏

i=0

(
n− j − 2i

2

)(
n− j − 2i− 1

2

)
= 2j−n(n− j)!.
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Plugging this into Equation (12), we get that |hn,j |/
√

2nn! is at most

2j/2
√

n!
(j!)2(n− j)!

≤ 2j/2
√

n!
j!(n− j)!

= 2j/2
√(

n

j

)
≤ 2j/22n/2.

Plugging this in turn into Equation (11) and simplifying, the second part
of the lemma follows.

Lemma 7 For any positive integer d, define the polynomial Q′d(x) =

pd

(√
n−3

2 x
)

, where pd(·) is defined in Lemma 6. Let U denote the uni-

form distribution on Sn−1. Then for any w ∈ Sn−1,

Ex∼U [
(
Q′d(w · x)− sgn(w · x)

)2] ≤ O(1/
√
d).

As a result, if we define Qd(x) = Q′d/2 + 1/2, we get

Ex∼U [(Qd(w · x)− φ0−1(w · x))2] ≤ O(1/
√
d).

The first part of this lemma is identical (up to notation) to theorem 6
in [17], and we refer the reader to it for the proof. The second part is an
immediate corollary.

With these lemmas at hand, we are now ready to prove the main result.
Using the polynomial Qd(·) from Lemma 7, we know it belongs to PB for

B =
d∑
j=0

2j
((√

n

2

)j
βj

)2

≤ O

 d∑
j=0

nj2j2d

 = O
(

(4n)d
)
. (13)

Now, recall by Theorem 1 that if we run our algorithm with these param-
eters, then the returned hypothesis f̃ satisfies the following with probability
at least 1− δ:

err(f̃) ≤ E[|QD(〈w∗,x〉)− y|] +O

(√
B log(1/δ)

m

)
. (14)

Using Lemma 7, we have that∣∣∣E[|Q(〈w∗,x〉)− y|]− E[|φ0−1(〈w∗,x〉)− y|]
∣∣∣ ≤ E[|Q(〈w∗,x〉)− φ0−1(〈w∗,x〉)|]

≤
√

E[(Q(〈w∗,x〉)− φ0−1(〈w∗,x〉))2] ≤ O(d−1/4).

Plugging this back into Equation (14), and choosing d = Θ(1/ε4), the result
follows.
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C.2 Proof of Lemma 2 and Theorem 2

In order to approximate φsig with a polynomial, we will use the technique
of Chebyshev approximation (cf. [21]). The idea is similar to the Hermite
approximation discussed earlier, but here a different family of orthogonal
polynomials is used. One can write any continuous function on [−1,+1] as
a Chebyshev expansion

∑∞
n=0 αnTn(·), where each Tn(·) is a particular n-th

degree polynomial denoted as the n-th Chebyshev polynomial (of the first
kind). These polynomials are defined as T0(x) = 1, T1(x) = x, and then
recursively via Tn+1(x) = 2xTn(x) − Tn−1(x). For any n, Tn(·) is bounded
in [−1,+1]. The coefficients in the Chebyshev expansion of φsig are equal to

αn =
1 + 1(n > 0)

π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx. (15)

Truncating the series after some threshold n = N provides an N -th degree
polynomial which approximates the original function.

In order to obtain a bound on B, we need to understand the behavior
of the coefficients in the Chebyshev approximation. These are determined
in turn by the behavior of αn as well as the coefficients of each Chebyshev
polynomial Tn(·). The following two lemmas provide the necessary bounds.

Lemma 8 For any n > 1, |αn| in the Chebyshev expansion of φsig on
[−1,+1] is upper bounded as follows:

|αn| ≤
2σ + 1/π
(1 + πσ)n

.

Also, we have |α0| ≤ 1, |α1| ≤ 2.

Proof The coefficients αn, n = 1, . . . in the Chebyshev series are given
explicitly by

αn =
2
π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx. (16)

For α0, the same equality holds with 2/π replaced by 1/π, so α0 equals

1
π

∫ 1

x=−1

φsig(x)√
1− x2

dx,

which by definition of φsig(x), is at most (1/π)
∫ 1
x=−1

(√
1− x2

)−1
dx = 1.

As for α1, it equals
2
π

∫ 1

x=−1

φsig(x)x√
1− x2

dx,
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whose absolute value is at most (2/π)
∫ 1
x=−1

(√
1− x2

)−1
dx = 2.

To evaluate the integral in Equation (16) for general n and σ, we will
need to use some tools from complex analysis. The calculation follows [12],
to which we refer the reader for justification of the steps and further details2.

On the complex plane, the integral in Equation (16) can be viewed as a
line integral over [−1,+1]. Using properties of Chebyshev polynomials, this
integral can be converted into a more general complex-valued integral over
an arbitrary closed curve C on the complex plane which satisfies certain
regularity conditions:

αn =
1
πi

∫
C

φsig(z)dz√
z2 − 1(z ±

√
z2 − 1)n

dz, (17)

where the sign in ± is chosen so that |z ±
√
z2 − 1| > 1. In particular, for

any parameter ρ > 1, the set of points z satisfying |z±
√
z2 − 1| = ρ form an

ellipse, which grows larger with ρ and with foci at z = ±1 and which grows
larger with ρ. Since we are free to choose C, we choose it as this ellipse
while letting ρ→∞.

To understand what happens when ρ→∞, we need to characterize the
singularities of φsig(z), namely the points z where φsig(z) is not well defined.
Recalling that φsig(z) = (1 + e−z/σ)−1, we see that the problematic points
are i(π + 2πk)σ for any k = ±1,±2, . . ., where the denominator in φsig(z)
equals zero. Note that this forms a discrete set of isolated points - in other
words, φsig is a meromorphic function. The fact that φsig is ’well behaved’
in this sense allows us to perform the analysis below.

The behavior of the function at its singularities is defined via the residue
of the function at each singularity c, which equals limz→c(z − c)φsig(z) as-
suming the limit exists (in that case, the singularity is called a simple pole,
otherwise a higher order limit might be needed). In our case, the residue for
the singularity at iπσ equals

lim
z→0

z

1 + e−iπ−z/σ
= lim

z→0

z

1− e−z/σ
= lim

z→0

σ

e−z/σ
= σ,

where we used l’Hôpital’s rule to calculate the limit. The same residue also
apply to all the other singularities.

For points in the complex plane uniformly bounded away from these
singularities, |φsig(z)| is bounded, and therefore it can be shown that the

2We note that such calculations also appear in standard textbooks on the subject, but they
are usually carried under asymptotic assumptions and disregarding coefficients which are
important for our purposes.
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integral in Equation (17) will tend to zero as we let C become an arbitrar-
ily large ellipse (not passing too close to any of the singularities) by taking
ρ→∞. However, as ρ varies smoothly, the ellipse does cross over singular-
ity points, and these contribute to the integral. For meromorphic functions,
with a discrete set of isolated singularities, we can simply sum over all con-
tributions, and it can be shown (see equation 10 in [12] and the subsequent
discussion) that

αn = −2
∞∑

k=−∞

rk√
z2
k − 1

(
zk ±

√
z2
k − 1

)n ,
where zk is the singularity point i(π+ 2πk)σ with corresponding residue rk.
Substituting the results for our chosen function, we have

αn =
∞∑

k=−∞

σ√
(i(π + 2πk)σ)2 − 1

(
i(π + 2πk)σ ±

√
(i(π + 2πk)σ)2 − 1

)n .
A routine simplification leads to the following3:

αn =
∞∑

k=−∞

σ

in+1

√
((π + 2πk)σ)2 + 1

(
(π + 2πk)σ ±

√
((π + 2πk)σ)2 + 1

)n .
It can be verified that ± should be chosen according to 1(k ≥ 0). Therefore,

|αn| =
∞∑

k=−∞

σ√
((π + 2πk)σ)2 + 1

(
|π + 2πk|σ +

√
((π + 2πk)σ)2 + 1

)n
≤

∞∑
k=−∞

σ

(|π + 2πk|σ + 1)n
≤ σ

(1 + πσ)n
+ 2

∞∑
k=1

σ

(1 + π(1 + 2k)σ)n

≤ σ

(1 + πσ)n
+
∫ ∞
k=0

2σ
(1 + π(1 + 2k)σ)n

dk

3On first look, it might appear that αn takes imaginary values for even n, due to the in+1

factor, despite αn being equal to a real-valued integral. However, it can be shown that
αn = 0 for even n. This additional analysis can also be used to slightly tighten our final
results in terms of constants in the exponent, but it was not included for simplicity.
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Solving the integral and simplifying gives us

|αn| ≤
1

(1 + πσ)n

(
σ +

1 + πσ

π(n− 1)

)
.

Since n ≥ 2, the result in the lemma follows.

Lemma 9 For any non-negative integer n and j = 0, 1, . . . , n, let tn,j be
the coefficient of xj in Tn(x). Then tn,j = 0 for any j with a different parity
than n, and for any j > 0,

|tn,j | ≤
en+j

√
2π

Proof The fact that tn,j = 0 for j, n with different parities, and |tn,0| ≤ 1
is standard. Using an explicit formula from the literature (see [21], pg. 24),
as well as Stirling approximation, we have that

|tn,j | = 2n−(n−j)−1 n

n− n−j
2

(
n− n−j

2
n−j

2

)
=

2jn
n+ j

(
n+j

2

)
!(

n−j
2

)
!j!

≤ 2jn
j!(n+ j)

(
n+ j

2

)j
=

n(n+ j)j

(n+ j)j!
≤ n(n+ j)j

(n+ j)
√

2πj(j/e)j

=
nej

(n+ j)
√

2πj

(
1 +

n

j

)j
≤ nej

(n+ j)
√

2πj
en.

from which the lemma follows.

We are now in a position to prove a bound on B. As discussed earlier,
φsig(x) in the domain [−1,+1] equals the expansion

∑∞
n=0 αnTx. The error

resulting from truncating the Chebyshev expanding at index N , for any
x ∈ [−1,+1], equals∣∣∣∣∣φsig(x)−

N∑
n=0

αnTn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

αnTn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|αn|,

where in the last transition we used the fact that |Tn(x)| ≤ 1. Using
Lemma 8 and assuming N > 0, this is at most

∞∑
n=N+1

2σ + 1/π
(1 + πσ)n

=
2σ + 1/π

πσ(1 + πσ)N
.

27



In order to achieve accuracy of less than ε in the approximation, we need to
equate this to ε and solve for N , resulting in

N ≥ log1+πσ

(
2σ + 1/π
πσε

)
. (18)

The series left after truncation is
∑N

n=0 αnTn(x), which we can write
as
∑N

j=0 βjx
j . Using Lemma 8 and Lemma 9, the absolute value of the

coefficient βj for j > 1 can be upper bounded by

∑
n=j..N,n=j mod 2

|an||tn,j | ≤
∑

n=j..N,n=j mod 2

2σ + 1/π
(1 + πσ)n

en+j

√
2π

=
(2σ + 1/π)ej√

2π

∑
n=j..N,n=j mod 2

(
e

1 + πσ

)n

=
(2σ + 1/π)ej√

2π

(
e

1 + πσ

)j bN−j
2
c∑

n=0

(
e

1 + πσ

)2n

≤ (2σ + 1/π)ej√
2π

(
e

1 + πσ

)j (e/(1 + πσ))N−j+2 − 1
(e/(1 + πσ))2 − 1

.

Since we assume σ ≤ 1/4, we have in particular e > 1+πσ, so we can upper
bound the expression above by dropping the 1 in the numerator, to get

2σ + 1/π√
2π((e/(1 + πσ))2 − 1)

(
e

1 + πσ

)N+2

ej .

The cases β0, β1 need to be treated separately, due to the different form
of the bounds on α0, α1. Repeating a similar analysis (using the actual
values of tn,1, tn,0 for any n), we get

β0 ≤ 1 +
1
π

+
1

2π2σ

β1 ≤ 2 +
3(2σ + 1/π)(1 + πσ)

4π2σ2
.

Now that we got a bound on the βj , we can plug it into the bound on
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B, and get

B =
N∑
j=0

2jβ2
j ≤ β2

0 + 2β2
1 +

N∑
j=2

(
2σ+1/π√

2π((e/(1+πσ))2−1)

)2 (
e

1+πσ

)2N+4
e2j

≤ β2
0 + 2β2

1 +
(

2σ+1/π√
2π((e/(1+πσ))2−1)

)2 (
e

1+πσ

)2N+4
e2N+1

e2−1

= β2
0 + 2β2

1 + (2σ+1/π)2e5

(e2−1)2π((e/(1+πσ))2−1)2(1+πσ)4

(
e2

1+πσ

)2N
.

To make the expression more readable, we make the (rather arbitrary) as-
sumption that σ ≤ 1/4. In that case, it is not difficult to show that we can
upper bound the above by

10 +
1

12σ4
+

3
2

(
e2

1 + πσ

)2N

≤ 10 +
1

12σ4
+

3
2
e4N .

Combining this with Equation (18), we get the result stated in the
Lemma 2.

Proof of Theorem 2 We first need to understand, for given ε, µ, what
σ in φsig we need to pick. It is easy to verify that we need to pick σ such
that ε ≥ 1/(1 + eµ/σ), or σ ≤ µ/(log(1/ε − 1). For simplicity, we will pick
the somewhat smaller value σ = µ/(log(1/ε)). Using Lemma 2, and the
assumption σ ≤ 1/4, we get that the appropriate value of B is

10+
1

12σ4
+

3
2

exp
(

4 log1+πσ

(
2σ+1/π
πσε

))
≤ 10+

1
12σ4

+
3
2

exp

4
log
(

1/2+1/π
πσε

)
log(1 + πσ)


Concentrating on the exponent, we have by the inequality log(1 + x) ≥
x− x2/2 for x ≥ 0 and the assumption σ ≤ 1/4 that it is at most

4
log
(

1/2+1/π
πσε

)
log(1 + πσ)

≤ 4
log
(

1/2+1/π
πσε

)
πσ(1− πσ/2)

≤ 4
log
(

1/2+1/π
πσε

)
(1− π/8)πσ

≤ 4
log
(

1
πσε

)
(1− π/8)πσ

≤
2.1 log

(
1
πσε

)
σ

Plugging the chosen value σ = µ/(log(1/ε)) and simplifying, the theorem
follows.
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